Day 1

1 If |a-1|=a-1, what is the range of a?

A. $a \geqslant 1$

B. $a\leqslant 1$ C. a<1

D. a>1

2 If 3 < a < 10, |3 - a| + |a - 10| =_____.

3 When a < -2, simplify |1 - a| + |2a + 1| + |a|.

4 Suppose $\sqrt{a^2-b} + |b^3-343| = 0$, ab =_____.

[5] If a, b, c are all integers, and $|a-b|^{19}+|c-a|^{99}=1$, |c-a|+|b-c|+|a-b|=_______.

Preview

6 Solve the absolute-value inequalities.

(1)
$$|x-5|+|x|+|x+2|<15$$
.

(2)
$$|1-x|+|x-2|>x+3$$
.

For $|x| + |x - 1| + |x - 2| + |x - 3| + \dots + |x - 100|$, the minimum value is ______.

Day 2

Review

1 Which of the following is the factorization?

A.
$$ab + a + 1 = a(b+1) + 1$$

B.
$$y^3 + 3y^2 = y^2(y+3)$$

C.
$$x^2+1=x\left(x+rac{1}{x}
ight)$$

$$D. m(a+b-c) = ma+mb-mc$$

The polynomial: $x^3 + ax$ can be factored as $x\left(x - \frac{1}{2}\right)(x + b)$. Find the value of a and b.

 $igced{3}$ The integers x and y satisfy the equation: 2xy+x+y=83, x+y= ______.

- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$
 - A. $\sqrt{2}$
- B. $\sqrt{3}$
- C. 2

- D. $\sqrt{5}$
- For any integer m, $(4m+5)^2 9$ must can be ().

A. divided by 8

B. divided by m

C. divided by m-91

D. divided by 2m-1

Preview

6 Factoriazation: $(x+1)^4 + (x^2-1)^2 + (x-1)^4$.

7 Factorization: $4\left(3x^2-x-1\right)\left(x^2+2x-3\right)-\left(4x^2+x-4\right)^2$.

Day 3^{而思培优}

Review

Given that $\{a_n\}$ is an arithmetic sequence, if $a_{10}=1$, $a_{15}=3$, d= ______, $a_{20}=$ ______, $a_{30}=$ ______.

The sum of the first n terms of an arithmetic sequence $\{a_n\}$ is denoted by S_n . If $S_2=2$ and $S_4=8$, then the value of S_6 is ______.

- The arithmetic sequence $\{a_n\}$ is given, where $a_5=33$ and $a_{45}=153$. The term 201 is the () term of the sequence.
 - A. **60**
- B. **61**
- C. 62
- D. **63**
- 4 For the geometric sequence: $\{a_n\}$, $a_2=4$, $a_3=8$, what is the value of $a_1+a_2+a_3+a_4$?
 - A. **30**
- B. 28
- C. 24
- D. 15

In a geometric sequence $\{a_n\}$ where all terms are positive, $a_1=3$ and the sum of the first 3 terms is 21. Therefore, what is the value of $a_3+a_4+a_5$?

- A. **33**
- B. **72**
- C. 84
- D. 189
- For the geometric sequence: $\{a_n\}$, common ratio is q=2, $a_2+a_4+a_6+\cdots+a_{100}=100$, what is the value of $a_1+a_3+a_5+\cdots+a_{99}$?
 - A. 10
- B. **25**
- C. 50
- D. 200

Preview

7 The sequence: $\{a_n\}$ satisfies $a_1=1$, and $a_n+a_{n+1}=3n+2$ is true, for any $n\in {\bf N}^*$, $a_{2020}=$

If the sequence $\{b_n\}$ satisfies the equation $\frac{b_1}{3}+\frac{b_2}{3^2}+\cdots+\frac{b_n}{3^n}=3n+3$ for $n\in\mathbb{N}_+$, then the sum of the first n terms of the sequence, S_n , is ______.

Day 4

Review

- Given the complex numbers: $z_1=1+i$ and $z_2=x+2i$ ($x\in \mathbf{R}$) , if the result of $z_1\cdot z_2$ is a real number, what is the value of x?
 - A. **-2**
- B. **-1**
- C. 1

D. 2

2 Calculate: $\frac{(2+i)^2}{3-4i} =$ _______.

- Given the complex number: $z=rac{m^2-m-6}{m+3}+(m^2-2m-15)$ i:
 - (1) When z is a real number, find the value of real number m.

(2) When z is a complex number, find the value of real number m.

(3) When z is a imaginary number, find the value of real number m.

 \bigcirc On the complex plane, point A represents the complex number:

$$z = (x^2 - 2x - 3) + (x^2 + 3x + 2)$$
i.

(1) When z is a real number, find the value of real number x.

(2) If point A is belong to Quadrant II, find the range of x.

- On the complex plane, which Quadrant the point represents the complex number $\frac{i}{1-i}$ belongs to?
 - A. Quadrant I
- B. Quadrant *II*
- C. Quadrant *III*
- D. Quadrant *IV*

Preview

- Given that complex number z satisfies |z-1|=1, what is the maximum value of
 - |2z-2-4i|?
 - A. 5

B. 6

C. 7

D. 8

- Assume m and $n \in \mathbb{R}$, two roots of the equation $x^2 + mx + n = 0$ (respects with x) are α and β , respectively.
 - (1) When $\alpha = 1 + i$, find the value of β , m, and n.

(2) When m = 2, n = 4, find the value of $|\alpha| + |\beta|$.

Day 5^{而思培优}

Review

Solve the quadratic equations.

$$(1) \quad 3x^2 + 2x - 5 = 0$$

(2)
$$x(x-1) = 2 - 2x$$

If the equation $(m-2)x^2-2x+1=0$ has two distinct real roots, what is the range of m?

A. m < 3

- B. m < 3 and $m \neq 2$ C. $m \leqslant 3$
- D. $m\leqslant 3$ and $m\neq 2$
- Given the function: $f(x) = (m^2 + 2m) \cdot x^{m^2 + m 1}$:
 - (1) If f(x) is a proportional function, what is the value of real number m?

(2) If f(x) is a inverse proportional function, what is the value of real number m?

(3) If f(x) is a quadratic function, what is the value of real number m?

4 What are the maximum and minimum values of the function $y=-x^2+4x+5$, where $x \in [1, 4]$, respectively?

A. 8, 9

B. 5, 9

Given the function $f(x)=x^2-2kx+2$, it is known that for $x\geqslant -1$, and $f(x)\geqslant k$. Find the range of real numbers for k. 学而思培仇

Preview

- Given the inequality: $ax^2 + 3x + 2 > 0$ ($a \in \mathbb{R}$), with respect to x.
 - (1) The solution set of the inequality $ax^2 + 3x + 2 > 0$ is given by $\{x | b < x < 1\}$. Find the values of a and b.

(2) The solution set of the inequality $ax^2 + 3x + 2 > -ax - 1$ (where a > 0) is as follows.

Given the function: $f(x) = \begin{cases} -x^2 + 2x, x \leqslant a \\ x, x > a \end{cases}$.

(1) When a = 1, the range of f(x) is _____.

(2) If the graph of the function f(x) has only one common point with the line y = a, the range of the real number a is _____ (to be determined).

Day 6

Review

Given seven cards labeled with numbers -3, -2, -1, 0, 1, 2, 3, all having the same backside, the probability of drawing a card with an absolute value less than ${f 2}$ is ______.

lacksquare In an opaque bag, there are 3 red balls and 1 yellow ball. They only differ in color. Two balls are randomly drawn from the bag. What is the probability of drawing exactly one yellow ball and one red ball?

B. $\frac{1}{3}$ C. $\frac{1}{4}$ D. $\frac{1}{6}$

The probability of selecting student A from a group of 5 students, including A and B, at random to choose 2 people is ().

B. $\frac{2}{5}$ EAC D. $\frac{9}{25}$ EAC D. $\frac{9}{25}$

In a box, there are 10 ping pong balls, including 6 new balls and 4 old balls. Two balls are randomly drawn without replacement for use. Given that a new ball is drawn on the first draw, what is the probability of drawing another new ball on the second draw?

When tossing a fair coin three times in succession, what is the probability of getting at least one head?

- A. $\frac{1}{8}$
- B. $\frac{3}{8}$
- C. $\frac{5}{8}$
- D. 7 要而思培优

Preview

- Put 7 same balls into 4 different boxes, marked as A, B, C, and D, respectively. Each box has 1 ball, at least. What is the probability of there are 3 balls in box A?
 - A. $\frac{3}{10}$
- B. $\frac{2}{5}$

- C. $\frac{3}{20}$
- D. $\frac{1}{4}$
- In an opaque cloth bag, there are a total of 200 balls, consisting of red, yellow, and blue balls. Except for their colors, all the balls are identical. After conducting multiple experiments of drawing balls, a student observed that the frequency of drawing red balls stabilized at 35% and the frequency of drawing blue balls stabilized at 55%.

 Therefore, the number of possible yellow balls in the bag is _____.

Day 7^{而思培优}

Review

B. 126

C. 84

D. 70

 \bigcirc Selecting ${f 2}$ students randomly from a group of 5 students, A, B, C, D, and E. What is the probability of selecting A?

A. $\frac{1}{5}$

 $B. \frac{2}{5}$

C. $\frac{8}{25}$ 思培优 D. $\frac{9}{25}$ 学而思培优

 ${\color{red} { extstyle { extstyle {1}}}}$ Companies A, B, and C are bidding for ${\color{red} { extstyle {9}}}$ projects, Company B bids for 2 projects, and Company C bids for 4 projects. How many different bidding combinations are there in total?

4	The four roommates each write a greeting card. The cards are then collected and
	redistributed so that each person receives a card from someone else. The number of
	different ways to distribute the four greeting cards is

- There are 6 numbers: 0, 1, 2, 3, 4, 5.
 - (1) How many odd three-digit numbers can be formed without repeating any digits?

(2) How many natural numbers less than 1000 can be formed with non-repeating digits?

D	rovi	OTAL
45.6	revi	ew

 $\boxed{6}$ There are $\boxed{2}$ different ways to arrange 6 students in a row, where student A is adjacent to student B and student A is not adjacent to student C.

There are a total of 16 different cards, including 4 red, 4 yellow, 4 blue, and 4 green cards. We want to select 3 cards, satisfying the condition that the 3 cards cannot be of the same color, and there can be at most 1 red card. How many different ways to select the D. 484 cards are there?

A. 232 B. 252

Day 1^{而思培优}

Review

If |a-1|=a-1, what is the range of a?

A. $a \geqslant 1$

B. $a \leqslant 1$

C. a < 1

D. a > 1

Answer A

Solution |a-1|=a-1,

 $\therefore a-1\geqslant 0$

SO $a\geqslant 1$.

2 If 3 < a < 10, $|3 - a| + |a - 10| = _____.$

Answer **7**

Solution :3 < a < 10

学而思培: 3-a < 0, a - 10 < 0

|a-a| + |a-10|

=-(3-a)-(a-10)

= -3 + a - a + 10

学而思培航7.

3 When a < -2, simplify |1 - a| + |2a + 1| + |a|.

Answer –4a

Solution
$$\because a < -2$$

$$\therefore 1-a > 0$$
, $2a+1 < 0$

SO
$$|1-a|=1-a$$
, $|2a+1|=-(2a+1)$, $|a|=-a$

$$|1-a| + |2a+1| + |a| = 1 - a - (2a+1) - a = -4a.$$

4 Suppose $\sqrt{a^2 - b} + |b^3 - 343| = 0$, ab =_____.

Answer ±7√7

Solution
$$abla \sqrt{a^2-b} + |b^3-343| = 0$$

$$b^3 - 343 = 0, a^2 - b = 0$$

$$b = 7$$
, $a^2 = b$, $a = \pm \sqrt{7}$

$$ab = \pm 7\sqrt{7}$$

If a, b, c are all integers, and $|a-b|^{19}+|c-a|^{99}=1$, |c-a|+|b-c|+|a-b|=______.

Answer 2

Solution $|a-b|^{19} + |c-a|^{99} = 1$,

a, b, c are intergers,

 \therefore the value of a - b and c - a are integers,

and
$$|a-b|^{19}$$
, $|c-a|^{99}$ are $\geqslant 0$,

the sum of 2 non-negative intergers is 1, so one of them is equal to 1, another one is equal to 0.

$$\therefore a - b = 1, a = c,$$

so
$$c-b=1$$
;

$$2|a-b|^{19}=0$$
, $|c-a|^{99}=1$,

$$\therefore a = b, c - a = 1,$$

so
$$c-b=1$$
,

For ①,
$$|c - a| + |a - b| + |b - c|$$

$$= 2;$$

For
$$\bigcirc$$
, $|c-a|+|a-b|+|b-c|$

$$= 1 + 0 + 1$$

$$=2$$
,

So the answer is 2.

Preview

6 Solve the absolute-value inequalities.

$$(1) ||x-5|+|x|+|x+2|<15.$$

(2)
$$|1-x|+|x-2|>x+3$$
.

Answer

- (1) -4 < x < 6.
- (2) x < 0 or x > 6.
- Solution (1) The meaning of the set on the left side of the inequality is the sum of the distances from the points x, 5, 0, and -2. When x = 0, the set on the left side achieves its minimum value.

When $x \le -2$, the inequality can be simplified as 5 - x - x - x - 2 < 15, which gives x > -4. Therefore, the inequality holds for $-4 < x \le -2$.

When $-2 < x \le 0$, the inequality can be simplified as 5 - x - x + x + 2 < 15, which gives x > -8. Therefore, the inequality holds for $-2 < x \le 0$.

When $0 < x \le 5$, the inequality can be simplified as 5 - x + x + x + 2 < 15, which gives x < 8. Therefore, the inequality holds for $0 < x \le 5$.

When x > 5, the inequality can be simplified as x - 5 + x + x + 2 < 15, which gives x < 6. Therefore, the inequality holds for 5 < x < 6.

In conclusion, the inequality holds for -4 < x < 6.

(2) Assuming that $x \le 1$, the left side of the equation can be transformed as follows: 1 - x + 2 - x = 3 - 2x.

3-2x>x+3, which implies 3x<0 and x<0. Therefore, x<0.

Assuming that $x \ge 2$, the left side of the equation can be transformed as

follows: x - 1 + x - 2 = 2x - 3.

2x-3>x+3, which implies x>6. Therefore, x>6.

Assuming that 1 < x < 2, the left side of the equation can be transformed as

follows: x - 1 + 2 - x = 1.

1 > x + 3, which implies x < -2.

This assumption contradicts the previous assumptions.

In conclusion, the correct solution is x < 0 or x > 6.

For $|x|+|x-1|+|x-2|+|x-3|+\cdots+|x-100|$, the minimum value is ______.

Answer 2550

Solution When x = 50, the minimum value is $(1 + 2 + 3 + \cdots + 50) \times 2 = 50 \times 51 = 2550$.

Day 2^{而思培优}

Review

Which of the following is the factorization?

A.
$$ab + a + 1 = a(b+1) + 1$$

B.
$$y^3 + 3y^2 = y^2(y+3)$$

$$\mathsf{C.} \ \ x^2+1=x\left(x+\frac{1}{x}\right)$$

D.
$$m(a+b-c) = ma+mb-mc$$

Answer B

- Solution The answer is option B. Option A is not in product form. Option C cannot be factored without fractions. Option D involves polynomial multiplication, not factoring.
- The polynomial: $x^3 + ax$ can be factored as $x\left(x \frac{1}{2}\right)(x + b)$. Find the value of a and b.

Answer
$$a = -\frac{1}{4}$$
, $b = \frac{1}{2}$.

Solution
$$x^3+ax=x\left(x^2+a\right)$$
, so $\left(x^2+a\right)=\left(x-rac{1}{2}
ight)(x+b)$, According to $-a=rac{1}{2}b$, and $b=rac{1}{2}$, so $a=-rac{1}{4}$, $b=rac{1}{2}$.

igcap 3 The integers x and y satisfy the equation: 2xy+x+y=83, x+y= _

Answer 83 or −85

Solution 4xy + 2x + 2y + 1 = 166 + 1, so (2x + 1)(2y + 1) = 167.

Given $(x^2+y^2)^4-6(x^2+y^2)^2+9=0$ with respect with x and y, $x^2+y^2=$ ______.

A. $\sqrt{2}$

- B. $\sqrt{3}$
- C. 2

D. $\sqrt{5}$

Answer B

Solution Assume $t=\left(x^2+y^2\right)^2$, so $t^2-6t+9=0$

$$(t-3)^2=0$$
, $t=3$

$$\left(x^2+y^2\right)^2=3$$
 $\therefore x^2+y^2=\sqrt{3}$

$$\therefore x^2 + y^2 = \sqrt{3}$$

5 For any integer m, $(4m+5)^2-9$ must can be ().

A. divided by 8

B. divided by m

C. divided by m-91

D. divided by 2m-1

Solution $(4m+5)^2-9$

$$= (4m+5+3)(4m+5-3)$$

$$=(4m+8)(4m+2)$$

$$=8(m+2)(2m+1)$$

 \therefore so $(4m+5)^2-9$ must can be divided by 8, m+2, and 2m+1,

so B, C, and D are wrong.

so A.

Preview

6 Factoriazation: $(x+1)^4 + (x^2-1)^2 + (x-1)^4$.

Answer $(3x^2+1)(x^2+3)$.

Solution Method 1: extend.

$$= (x^2 + 2x + 1)^2 + (x^4 - 2x^2 + 1) + (x^2 - 2x + 1)^2 = 3x^4 + 10x^2 + 3$$

$$= (3x^2 + 1)(x^2 + 3).$$

Method 2: difference between square pattern.

$$= (x+1)^4 + 2(x^2-1)^2 + (x-1)^4 - (x^2-1)^2$$

$$= (2x^2 + 2)^2 - (x^2 - 1)^2 = (3x^2 + 1)(x^2 + 3).$$

7 Factorization: $4(3x^2 - x - 1)(x^2 + 2x - 3) - (4x^2 + x - 4)^2$.

Answer $-(2x^2 - 3x + 2)^2$.

Solution $(3x^2-x-1)+(x^2+2x-3)=4x^2+x-4$,

Assume $3x^2 - x - 1 = A$, $x^2 + 2x - 3 = B$,

 $4x^2 + x - 4 = A + B.$

 $=4AB-(A+B)^2$ $= -A^2 - B^2 + 2AB$

 $= -(A - B)^2$

 $= - \big[(3x^2 - x - 1) - (x^2 + 2x - 3) \big]^2$

 $= -(2x^2 - 3x + 2)^2$.

Day 3^{而思培优}

Review

Given that $\{a_n\}$ is an arithmetic sequence, if $a_{10}=1$, $a_{15}=3$, d= ______, $a_{20}=$ ______, $a_{30}=$ ______.

Answer
$$1:\frac{2}{5}$$
 2:5

Solution
$$a_{20}-a_{15}=a_{15}-a_{10}$$
, so $a_{20}=5$; $a_{10},\,a_{20},\,a_{30}$ are Arithmetic sequences, so $a_{30}=9$. $d=\frac{a_{15}-a_{10}}{15-10}=\frac{2}{5}$.

The sum of the first n terms of an arithmetic sequence $\{a_n\}$ is denoted by S_n . If $S_2=2$ and $S_4=8$, then the value of S_6 is ______.

Solution By the properties of the sum of the first n terms of an arithmetic sequence $\{a_n\}$, we can deduce that S_2 , $S_4 - S_2$, and $S_6 - S_4$ form an arithmetic sequence.

Therefore, solving for S_6 , we find that $S_6 = 18$.

Hence, the answer is 18.

The arithmetic sequence $\{a_n\}$ is given, where $a_5=33$ and $a_{45}=153$. The term 201 is the) term of the sequence.

A. 60

B. **61**

C. 62

学而思培优

D. 63

Answer B

Solution: $\{a_n\}$ is the Arithmetic sequence,

$$\therefore a_5 = 33, \ a_{45} = 153,$$

$$\therefore d=3$$

so
$$a_n = a_{45} + 3(n-45)$$
,

when
$$a_n = 153 + 3(n - 45) = 201$$
,

$$n = 61$$
.

For the geometric sequence: $\{a_n\}$, $a_2=4$, $a_3=8$, what is the value of $a_1+a_2+a_3+a_4$?

B. 28

C. 24

D. 15 兴而思培()

Answer

Solution $a_1 = 2$, $a_4 = 16$, so $a_1 + a_2 + a_3 + a_4 = 30$.

first 3 terms is 21. Therefore, what is the value of $a_3 + a_4 + a_5$? D. 189 学而思培优

A. 33

B. 72

C. 84

Solution In a geometric sequence $\{a_n\}$ where all terms are positive,

$$a_1 = 3$$
 and $a_1 + a_2 + a_3 = 21$,

Hence,
$$q + q^2 - 6 = 0$$
,

Therefore,
$$(q-2)(q+3) = 0$$
,

Solving for
$$q$$
, we get $q = 2$ or $q = -3$ (discarded),

Thus,
$$a_3 + a_4 + a_5 = a_1(q^2 + q^3 + q^4) = 3(4 + 8 + 16) = 84$$
.

- 6 For the geometric sequence: $\{a_n\}$, common ratio is q=2, $a_2+a_4+a_6+\cdots+a_{100}=100$, what is the value of $a_1 + a_3 + a_5 + \cdots + a_{99}$? C. 50 D. 200学而思培优
 - A. 10
- B. 25

Answer C

Solution: $\{a_n\}$ is a geometric sequence, and $a_2 + a_4 + a_6 + \cdots + a_{100} = 100$,

$$\therefore a_1q + a_3q + \cdots + a_{99}q = 100,$$

$$q=2$$
, $a_1+a_3+a_5+\cdots+a_{99}=50$.

Preview

学而思培优

The sequence: $\{a_n\}$ satisfies $a_1=1$, and $a_n+a_{n+1}=3n+2$ is true, for any $n\in \mathbb{N}^*$, $a_{2020}=$

Answer 3031

Solution For any $n\in \mathbb{N}^*$, the equation $a_n+a_{n+1}=3n+2$ holds.

When $n \ge 2$, we can obtain: $a_{n-1} + a_n = 3n - 1$.

Subtracting the two equations, we have: $a_{n+1} - a_{n-1} = 3$.

When n = 1, we have: $a_1 + a_2 = 5$, which gives us $a_2 = 4$.

Therefore, the sequence $\{a_{2n}\}$ forms an arithmetic progression with first term 4 and common difference 3.

Hence, $a_{2020} = 4 + 3 \times 1009 = 3031$.

Therefore, the answer is 3031.

If the sequence $\{b_n\}$ satisfies the equation $\frac{b_1}{3}+\frac{b_2}{3^2}+\cdots+\frac{b_n}{3^n}=3n+3$ for $n\in\mathbb{N}_+$, then the sum of the first n terms of the sequence, S_n , is ______.

Answer
$$\frac{3^{n+2}+9}{2}$$

Solution Because
$$\frac{b_1}{3} + \frac{b_2}{3^2} + \cdots + \frac{b_{n-1}}{3^{n-1}} + \frac{b_n}{3^n} = 3n + 3$$
 (1),

So when
$$n\geqslant 2$$
, $\frac{b_1}{3}+\frac{b_2}{3^2}+\cdots+\frac{b_{n-1}}{3^{n-1}}=3(n-1)+3=3n$ (2),

By subtracting (2) from (1), we get $\frac{b_n}{3^n} = 3$,

So when $n\geqslant 2$, $b_n=3^{n+1}$,

When n=1, $\frac{b_1}{3}=6$, i.e., $b_1=18$, which does not satisfy the given equation,

Therefore, the general term of the sequence $\{b_n\}$ is $b_n=\left\{egin{array}{ll} 18, & n=1 \\ 3^{n+1}, & n\geqslant 2 \end{array}\right.$

Thus, the sum of the first n terms of the sequence $\{b_n\}$ is

$$S_n = 18 + \frac{3^3(1-3^{n-1})}{1-3} = \frac{3^{n+2}+9}{2}.$$

Think Academy						
学而思培 Hence, th	e answer is $\frac{3^{n+2}+9}{2}$.					

Day 4^{而思培优}

Review

Given the complex numbers: $z_1=1+i$ and $z_2=x+2i$ ($x\in \mathbf{R}$) , if the result of $z_1\cdot z_2$ is a real number, what is the value of x?

A. **-2**

B. -1

C. 1

D. 2

Answer A

Solution
$$z_1\cdot z_2=(1+\mathrm{i})\cdot (x+2\mathrm{i})=(x-2)+(2+x)\,\mathrm{i}$$
 , $\because z_1\cdot z_2\in\mathbf{R}$, $\therefore 2+x=0$, $\therefore x=-2$.

Calculate: $\frac{(2+i)^2}{3-4i} = \underline{\hspace{1cm}}.$

Answer
$$-\frac{7}{25} + \frac{24}{25}i$$

Solution
$$\frac{(2+i)^2}{3-4i} = \frac{3+4i}{3-4i} = \frac{(3+4i)^2}{(3-4i)(3+4i)} = \frac{-7+24i}{25} = -\frac{7}{25} + \frac{24}{25}i$$
.

- Given the complex number: $z=rac{m^2-m-6}{m+3}+(m^2-2m-15)$ i:
 - (1) When z is a real number, find the value of real number m.

(2) When z is a complex number, find the value of real number m.

(3) When z is a imaginary number, find the value of real number m.

Answer (1) When m = 5, z is a real number.

- (2) When $m \neq 5$ and $m \neq -3$, z is an complex number.
 - (3) When m = 3 or m = -2, z is an imaginary number.

(2)
$$\begin{cases} m+3 \neq 0 \\ m^2 - 2m - 15 \neq 0 \end{cases} \Rightarrow m \neq 5 \text{ and } m \neq -3.$$

Solution (1)
$$\begin{cases} m+3 \neq 0 \\ m^2 - 2m - 15 = 0 \end{cases} \Rightarrow m = 5.$$
(2)
$$\begin{cases} m+3 \neq 0 \\ m^2 - 2m - 15 \neq 0 \end{cases} \Rightarrow m \neq 5 \text{ and } m \neq -3.$$
(3)
$$\begin{cases} \frac{m^2 - m - 6}{m+3} = 0 \\ m^2 - 2m - 15 \neq 0 \end{cases} \Rightarrow m = 3 \text{ or } m = -2.$$

On the complex plane, point A represents the complex number:

$$z = (x^2 - 2x - 3) + (x^2 + 3x + 2)i$$
.

(1) When z is a real number, find the value of real number x.

(2) If point A is belong to Quadrant II, find the range of x.

Answer (1)
$$x = -2$$
 or -1 .

(2)
$$x \in (-1,3)$$
.

(1)
$$x^2 + 3x + 2 = 0$$
, $x = -2$ or -1

Solution (1)
$$x^2 + 3x + 2 = 0$$
, $x = -2$ or -1 .
(2)
$$\begin{cases} x^2 - 2x - 3 < 0 \\ x^2 + 3x + 2 > 0 \end{cases}$$
 so $-1 < x < 3$.

- On the complex plane, which Quadrant the point represents the complex number $rac{\mathrm{i}}{1-\mathrm{i}}$ belongs to?
 - A. Quadrant I
- B. Quadrant II
- C. Quadrant *III*
- D. Quadrant IV

Answer B

Solution
$$\frac{i}{1-i} = \frac{i(1+i)}{(1-i)(1+i)} = \frac{-1+i}{2} = -\frac{1}{2} + \frac{i}{2}$$
.

For complex number: $\frac{i}{1-i}$, the real part is $-\frac{1}{2}$, the imaginary part os $\frac{1}{2}$. so the point represents the complex number: $\frac{\mathbf{i}}{1-\mathbf{i}}$ belongs to Quadrant II.

Preview

Given that complex number z satisfies |z-1|=1, what is the maximum value of |2z - 2 - 4i|?

A. 5

B 6

C. 7

D. 8

Answer B

Solution Let's assume z = a + bi, then from |z - 1| = 1 we have:

$$|(a-1)+bi|^2=1$$
, which gives $|(a-1)^2+b^2|=1$ (where $-1\leqslant b\leqslant 1$),

$$|2z-2-4i|=2|z-1-2i|=2\sqrt{(a-1)^2+(b-2)^2}=2\sqrt{1-b^2+b^2-4b+4}=2\sqrt{5-4b}.$$

Since $-1 \le b \le 1$, we have $1 \le 5 - 4b \le 9$,

Therefore, $2\sqrt{5-4b} \leqslant 2 \cdot 3 = 6$.

Thus, the maximum value of |2z-2-4i| is 6,

Therefore, the answer is B.

- Assume m and $n \in \mathbb{R}$, two roots of the equation $x^2 + mx + n = 0$ (respects with x) are α and β , respectively.
 - (1) When $\alpha = 1 + i$, find the value of β , m, and n.

(2) When m = 2, n = 4, find the value of $|\alpha| + |\beta|$.

Answer

- (1) $\beta = 1 i$, m = -2, n = 2.
- (2) 1

Solution (1) We know that $\alpha = 1 + i$ is a root of the equation $x^2 + mx + n = 0$,

Therefore, $(1+i)^2 + m(1+i) + n = 0$,

This simplifies to m + n + (m + 2)i = 0,

Rearranging the equation, we have m + n + (m + 2)i = 0,

Since m and n are real numbers,

We have
$$\begin{cases} m+n=0 \\ m+2=0 \end{cases}$$
 Which gives $\begin{cases} m=-2 \\ n=2 \end{cases}$

Which gives
$$\left\{egin{array}{l} m=-2 \\ n=2 \end{array}
ight.$$

Thus, the equation in terms of x is $x^2 - 2x + 2 = 0$,

Using the relationship between the roots and coefficients, we have $\alpha + \beta = 2$,

Therefore, $\beta = 2 - \alpha = 2 - (1 + i) = 1 - i$,

In conclusion, $\beta = 1 - i$, m = -2, n = 2.

(2) When m=2 and n=4, the equation becomes $x^2+2x+4=0$,

The roots of the equation $x^2+2x+4=0$ are $x=\frac{-2\pm\sqrt{-2^2+4\times4i}}{2}$,

Simplifying, we have $x = -1 \pm \sqrt{3}i$,

Let's assume $\alpha = -1 - \sqrt{3}i$ and $\beta = -1 + \sqrt{3}i$,

Then,
$$|lpha|+|eta|=|-1-\sqrt{3}\mathrm{i}|+|-1+\sqrt{3}\mathrm{i}|$$

$$= \sqrt{(-1)^2 + (-\sqrt{3})^2} + \sqrt{(-1)^2 + (\sqrt{3})^2} = 4,$$

In conclusion, the value of $|\alpha| + |\beta|$ is 4.

Day 5^{而思培优}

Review

Solve the quadratic equations.

$$(1) \quad 3x^2 + 2x - 5 = 0$$

(2)
$$x(x-1) = 2-2x$$

Answer (1) $x_1 = 1$, $x_2 = -\frac{5}{3}$.

(2)
$$x_1 = 1, x_2 = -2.$$

Solution (1)
$$3x^2 + 2x - 5 = 0$$
,

$$(x-1)(3x+5)=0,$$

$$\therefore x_1=1,\,x_2=-\frac{5}{3}.$$

(2)
$$x^2 - x = 2 - 2x$$

$$x^2 - x + 2x - 2 = 0,$$

$$x^2+x-2=0,$$

$$(x+2)(x-1)=0,$$

$$\therefore x_1=1, x_2=-2.$$

If the equation $(m-2)x^2-2x+1=0$ has two distinct real roots, what is the range of m?

A. m < 3

D. $m \leqslant 3$ and $m \neq 2$

Answer B

Solution According to the given conditions, we have $m-2 \neq 0$ and $\Delta = (-2)^2 - 4(m-2) > 0$, Solving these inequalities, we obtain m < 3 and $m \neq 2$.

- Given the function: $f(x) = (m^2 + 2m) \cdot x^{m^2 + m 1}$:
- (1) If f(x) is a proportional function, what is the value of real number m?

(2) If f(x) is a inverse proportional function, what is the value of real number m?

(3) If f(x) is a quadratic function, what is the value of real number m?

- 学而思培优

(3)
$$m = \frac{-1 \pm \sqrt{13}}{2}$$
.

$$igg(1) \quad egin{cases} m^2+m-1=1\ m^2+2m
eq 0 \end{cases}$$
 , so $m=1$

(2)
$$\begin{cases} m^2 + m - 1 = -1 \\ m^2 + 2m \neq 0 \end{cases} : m = -1$$

Solution (1)
$$\begin{cases} m^2 + m - 1 = 1 \\ m^2 + 2m \neq 0 \end{cases}, \text{ so } m = 1.$$
(2)
$$\begin{cases} m^2 + m - 1 = -1 \\ m^2 + 2m \neq 0 \end{cases}, \therefore m = -1.$$
(3)
$$\begin{cases} m^2 + m - 1 = 2 \\ m^2 + 2m \neq 0 \end{cases} \therefore m = \frac{-1 \pm \sqrt{13}}{2}.$$

What are the maximum and minimum values of the function $y=-x^2+4x+5$, where $x \in [1, 4]$, respectively? D. 1, 参而思培优

A. 8,9

Answer B

Solution Since the graph of the quadratic function $y = -x^2 + 4x + 5$ is a downward-opening parabola with the axis of symmetry at x = 2, and considering that $x \in [1, 4]$, we can conclude that the function has a maximum value of 9 when x = 2, and a minimum value of 5 when x = 4.

Therefore, the answer is B.

Given the function $f(x) = x^2 - 2kx + 2$, it is known that for $x \ge -1$, and $f(x) \ge k$. Find the range of real numbers for k.

Answer [-3,1].

Solution Let $g(x) = f(x) - k = x^2 - 2kx + 2 - k$,

then $g(x)\geqslant 0$ holds for all $x\geqslant -1$,

The graph of g(x) has a symmetry axis at x = k,

Therefore, we have
$$\left\{egin{aligned} k\leqslant -1 \\ g(-1)\geqslant 0 \end{aligned}
ight.$$
 or $\left\{egin{aligned} k>-1 \\ \Delta=4k^2-4(2-k)\leqslant 0 \end{aligned}
ight.$

Solving the inequalities, we obtain $-3 \le k \le 1$.

Preview

- Given the inequality: $ax^2 + 3x + 2 > 0$ ($a \in \mathbb{R}$), with respect to x.
 - (1) The solution set of the inequality $ax^2 + 3x + 2 > 0$ is given by $\{x | b < x < 1\}$. Find the values of a and b.

(2) The solution set of the inequality $ax^2 + 3x + 2 > -ax - 1$ (where a > 0) is as 堂而思培 follows.

- Answer (1) $b = -\frac{2}{5}$.
 - (2) ① When 0 < a < 3, the solution set is $\left\{x | x < -\frac{3}{a} \text{ or } x > -1\right\}$.
 - ② When a = 3, the solution set is $\{x | x \neq -1\}$.
 - (3) When a > 3, the solution set is $\{x | x < -1 \text{ or } x > -\frac{3}{a} \}$.
- Solution (1) Substituting x = 1 into $ax^2 + 3x + 2 = 0$, we obtain a = -5. Therefore, the inequality $ax^2 + 3x + 2 > 0$ becomes $-5x^2 + 3x + 2 > 0$.

学而思培优 ,

Further simplifying, we have (x-1)(5x+2) < 0.

Hence, the solution set of the original inequality is $\left\{x|-\frac{2}{5} < x < 1\right\}$.

Therefore, $b = -\frac{2}{5}$.

(2) The inequality $ax^2 + 3x + 2 > -ax - 1$ can be rewritten as $ax^2 + (a+3)x + 3 > 0$

which can be further simplified to (ax + 3)(x + 1) > 0.

When 0 < a < 3, we have $-\frac{3}{a} < -1$, and the solution set of the inequality is $\left\{x|x>-1 \text{ or } x<-rac{3}{a}\right\}.$

When a=3, we have $-\frac{3}{a}=-1$, and the solution set of the inequality is $\{x|x\neq -1\}.$

When a > 3, we have $-\frac{3}{a} > -1$, and the solution set of the inequality is $\left\{x|x<-1 \text{ or } x>-rac{3}{a}
ight\}.$

In summary, the solution sets of the original inequality are:

- ① When 0 < a < 3, $\left\{ x | x < -\frac{3}{a} \text{ or } x > -1 \right\}$.
- ② When a = 3, $\{x | x \neq -1\}$.

(1) When a = 1, the range of f(x) is _____.

(2) If the graph of the function f(x) has only one common point with the line y = a, the range of the real number a is _____ (to be determined).

Answer

- (1) **R**
- (2) [0,1]

Solution (1) When a=1, the function $f(x)=\begin{cases} -x^2+2x, x\leqslant 1 \\ x, x>1 \end{cases}$.

The graph of y = f(x) is shown in the figure.

From the graph, we can see that the range of the function f(x) is \mathbf{R} (all real numbers).

(2) Given that when x > a, f(x) = x > a, the graph of f(x) does not intersect the line y = a.

Hence, if the graph of the function f(x) has only one common point with the line y=a, it must satisfy $f(x)=-x^2+2x$ for $x\leqslant a$.

The symmetry axis of $f(x) = -x^2 + 2x$ is x = 1.

When $a \le 1$, $f(x) \in (-\infty, -a^2 + 2a]$. For $f(x) = -x^2 + 2x$ to have only one common point with the line y = a, it must satisfy $a \le -a^2 + 2a$, which implies $0 \le a \le 1$.

When a > 1, the graph of $f(x) = -x^2 + 2x$ is as shown in the graph.

In this case, for $f(x)=-x^2+2x$ to have only one common point with the line y=a, it must satisfy $a\leqslant -a^2+2a$. However, there is no solution for this condition.

In conclusion, the range of the real number a is [0,1].

学而思培优 学而思培优

Day 6 而思始优

Review

Given seven cards labeled with numbers -3, -2, -1, 0, 1, 2, 3, all having the same backside, the probability of drawing a card with an absolute value less than 2 is ______.

Answer $\frac{3}{7}$

Solution The cards with an absolute value less than 2 are -1, 0, 1. Therefore, the probability is 7

- In an opaque bag, there are 3 red balls and 1 yellow ball. They only differ in color. Two balls are randomly drawn from the bag. What is the probability of drawing exactly one D. 1 学而思培优 yellow ball and one red ball?

Solution When randomly drawing two balls, there are a total of 6 possibilities. Out of these, there are exactly 3 possibilities where we draw one yellow ball and one red ball. Therefore, the probability is $\frac{3}{6} = \frac{1}{2}$.

In other words, there is a 50% chance of drawing one yellow ball and one red ball.

- The probability of selecting student A from a group of 5 students, including A and B, at random to choose 2 people is ().
 - A. $\frac{1}{5}$

- B. $\frac{2}{5}$
- C. $\frac{8}{25}$
- D. $\frac{9}{25}$

Answer

Solution The total number of possible outcomes is $n = {5 \choose 2} = 10$.

The number of outcomes where student A is selected is $m = \binom{1}{1}\binom{4}{1} = 4$.

Therefore, the probability of selecting student A is $P = \frac{m}{n} = \frac{4}{10} = \frac{2}{5}$.

Hence, the answer is B.

- In a box, there are 10 ping pong balls, including 6 new balls and 4 old balls. Two balls are randomly drawn without replacement for use. Given that a new ball is drawn on the first draw, what is the probability of drawing another new ball on the second draw?
 - A. $\frac{3}{5}$

- B. $\frac{1}{10}$
- C. $\frac{5}{9}$

D. $\frac{2}{5}$

Answer (

Solution Given that a new ball is drawn on the first draw, there are 9 balls remaining in the box, consisting of 5 new balls and 4 old balls.

Therefore, the probability of drawing another new ball on the second draw is $\frac{5}{9}$. Hence, the answer is option C.

- When tossing a fair coin three times in succession, what is the probability of getting at least one head?
 - A. $\frac{1}{8}$

B. $\frac{3}{8}$

- C. $\frac{5}{8}$
- D. $\frac{7}{8}$

Answer [

Solution The complementary event to "getting all tails in three tosses" is "getting at least one head." The probability of getting all tails is $\overline{P} = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$. Therefore, the probability of getting at least one head is $P = 1 - \overline{P} = 1 - \frac{1}{8} = \frac{7}{8}$. Hence, the answer is \mathbf{D} .

Preview

Put 7 same balls into 4 different boxes, marked as A, B, C, and D, respectively. Each box has 1 ball, at least. What is the probability of there are 3 balls in box A?

A. $\frac{3}{10}$

B. $\frac{2}{5}$

C. $\frac{3}{20}$

D. $\frac{1}{4}$

Answer (

Solution The number of ways to distribute 7 identical balls into 4 distinct boxes, with at least 1 ball in each box, is $\mathbf{C}_6^3=\mathbf{20}$. Among these ways, the number of ways to have exactly 3 balls in box A is $\mathbf{C}_3^2=\mathbf{3}$.

Therefore, the probability is $\frac{3}{20}$.

Thus, the answer is C.

In an opaque cloth bag, there are a total of 200 balls, consisting of red, yellow, and blue balls. Except for their colors, all the balls are identical. After conducting multiple experiments of drawing balls, a student observed that the frequency of drawing red balls stabilized at 35% and the frequency of drawing blue balls stabilized at 55%.

Therefore, the number of possible yellow balls in the bag is _____.

Answer 20

Solution Since the student observed that the frequency of drawing red balls stabilized at 35% and the frequency of drawing blue balls stabilized at 55%,

Therefore, the probability of drawing a yellow ball is 1-35%-55%=10%, Therefore, the number of yellow balls in the bag is $200\times10\%=20$,

So, the possible number of yellow balls in the bag is 20.

Hence, the answer is 20.

Day 7

Review

 $1 \quad {}_{5}C_{5} + {}_{6}C_{5} + {}_{7}C_{5} + {}_{8}C_{5} = () .$

A. 28

B. **126**

C. 84

D. 70

Answer C

Solution ${}_{5}C_{5} + {}_{6}C_{5} + {}_{7}C_{5} + {}_{8}C_{5} = {}_{6}C_{6} + {}_{6}C_{5} + {}_{7}C_{5} + {}_{8}C_{5} = {}_{7}C_{6} + {}_{7}C_{5} + {}_{8}C_{5} = {}_{8}C_{6} + {}_{8}C_{5} = {}_{9}C_{3} = 84$

2 Selecting 2 students randomly from a group of 5 students, A, B, C, D, and E. What is the probability of selecting A?

A. $\frac{1}{5}$

B. $\frac{2}{5}$

C. $\frac{8}{25}$

D. $\frac{9}{25}$

Answer B

Solution Selecting 2 students randomly from a group of 5 students: A, B, C, D, and E.

The total number of possible outcomes is $n =_5 C_2 = 10$.

The number of outcomes where A is selected is $m=_4\mathrm{C}_1=4$.

Therefore, the probability of selecting A is $p = \frac{m}{n} = \frac{4}{10} = \frac{2}{5}$.

Companies A, B, and C are bidding for 9 projects. Company A bids for 3 projects,
Company B bids for 2 projects, and Company C bids for 4 projects. How many different bidding combinations are there in total?

Answer **1260**.

Solution ${}_{9}$ C_{3} \cdot_{6} C_{2} \cdot_{4} $C_{4}=1260$.

The four roommates each write a greeting card. The cards are then collected and redistributed so that each person receives a card from someone else. The number of different ways to distribute the four greeting cards is ______.

Answer 9

Solution This problem can be seen as filling the numbers 1, 2, 3, 4 into the four squares labeled 1, 2, 3, 4. Each square should be filled with a number, and the filling should follow the rule that the number in each square is different from its label.

Therefore, in the first step, there are 3 ways to fill the number 1 into the 3 squares labeled 2 to 4.

In the second step, we fill the corresponding number (2, 3, or 4) into the remaining 3 squares, and there are 3 ways to do so.

In the third step, we fill the remaining 2 numbers into the remaining 2 squares, and there is only one way to do this.

Therefore, there are a total of 9 ways.

- 5 There are 6 numbers: 0, 1, 2, 3, 4, 5.
 - (1) How many odd three-digit numbers can be formed without repeating any digits?

(2) How many natural numbers less than 1000 can be formed with non-repeating digits?

Answer

- (1) 48
- (2) **131**.

Solution

- (1) Dividing it into three steps:
 - ① First, choose the units digit, which can be done in 3 ways.
 - ② Then, choose the hundreds digit, which can be done in 4 ways.
 - ③ Finally, choose the tens digit, also in 4 ways.

Therefore, there are a total of $3 \times 4 \times 4 = 48$ odd three-digit numbers.

- (2) There are three categories:
 - ① Single-digit numbers, with a total of 6 numbers;
 - ② Two-digit numbers, with a total of $5 \times 5 = 25$ numbers;
 - ③ Three-digit numbers, with a total of $5 \times 5 \times 4 = 100$ numbers.

Therefore, the total number of natural numbers less than 1000 that can be formed is 6 + 25 + 100 = 131.

Preview

There are _____ different ways to arrange 6 students in a row, where student A is adjacent to student B and student A is not adjacent to student C.

Answer 192

Solution Using the bundling method, there are $A_5^5A_2^2=240$ ways when student A is adjacent to student B. When student A is adjacent to both student B and student C, there are $2A_4^4=48$ ways. Therefore, the total number of different arrangements is 240-48=192.

Hence, the answer is 192.

There are a total of 16 different cards, including 4 red, 4 yellow, 4 blue, and 4 green cards. We want to select 3 cards, satisfying the condition that the 3 cards cannot be of the same color, and there can be at most 1 red card. How many different ways to select the cards are there?

A. 232

B. 252

C. 472

D. 484

Answer C

Solution If there are no red cards, we need to select 3 cards from the yellow, blue, and green cards. If all three cards are of different colors, there are $_4C_1 \times_4 C1 \times_4 C1 = 64$ possibilities. If two cards are of the same color, there are $_3C_2 \times_2 C_1 \times_4 C_2 \times_4 C_1 = 144$ possibilities.

If there is one red card and the remaining two cards are of different colors, there are ${}_4C_1 \times_3 C_2 \times_4 C_1 \times_4 C_1 = 192$ possibilities. If the remaining two cards are of the same color, there are ${}_4C_1 \times_3 C_1 \times_4 C_2 = 72$ possibilities.

Therefore, there are a total of 64 + 144 + 192 + 72 = 472 different ways to select the cards.

By considering the cases without red cards and with one red card separately, we have $_{12}C_3-3\times_4C_3+_4C_1\times_{12}C_2=472$.