The focus of the Mathematics II course is on quadratic expressions, equations, and functions; comparing their characteristics and behavior to those of linear and exponential relationships from Mathematics I. This course includes standards from the conceptual categories of Number and Quantity, Algebra, Functions, Geometry, and Statistics and Probability. Some standards are repeated in multiple higher mathematics courses; therefore instructional notes, which appear in brackets, indicate what is appropriate for study in this particular course. For example, the scope of Mathematics II is limited to quadratic expressions and functions, and some work with absolute value, step, and functions that are piecewise-defined. Therefore, although a standard may include references to logarithms or trigonometry, those functions should not be included in course work for Mathematics II; they will be addressed in Mathematics III.

For the Mathematics II course, instructional time should focus on five critical areas: (1) extend the laws of exponents to rational exponents; (2) compare key characteristics of quadratic functions with those of linear and exponential functions; (3) create and solve equations and inequalities involving linear, exponential, and quadratic expressions; (4) extend work with probability; and (5) establish criteria for similarity of triangles based on dilations and proportional reasoning.

- (1) Students extend the laws of exponents to rational exponents and explore distinctions between rational and irrational numbers by considering their decimal representations. Students learn that when quadratic equations do not have real solutions, the number system must be extended so that solutions exist, analogous to the way in which extending the whole numbers to the negative numbers allows x + 1 = 0 to have a solution. Students explore relationships between number systems: whole numbers, integers, rational numbers, real numbers, and complex numbers. The guiding principle is that equations with no solutions in one number system may have solutions in a larger number system.
- (2) Students consider quadratic functions, comparing the key characteristics of quadratic functions to those of linear and exponential functions. They select from among these functions to model phenomena. Students learn to anticipate the graph of a quadratic function by interpreting various forms of quadratic expressions. In particular, they identify the real solutions of a quadratic equation as the zeros of a related quadratic function. When quadratic equations do not have real solutions, students learn that that the graph of the related quadratic function does not cross the horizontal axis. They expand their experience with functions to include more specialized functions—absolute value, step, and those that are piecewise-defined.
- (3) Students begin by focusing on the structure of expressions, rewriting expressions to clarify and reveal aspects of the relationship they represent. They create and solve equations, inequalities, and systems of equations involving exponential and quadratic expressions.
- (4) Building on probability concepts that began in the middle grades, students use the language of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions.
- (5) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. Students develop facility with geometric proof. They use what they know about congruence and similarity to prove theorems involving lines, angles, triangles, and other polygons. They explore a variety of formats for writing proofs.

The Standards for Mathematical Practice complement the content standards so that students increasingly engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle, and high school years.

Note: The source of this introduction is the Massachusetts Curriculum Framework for Mathematics (Malden: Massachusetts Department of Elementary and Secondary Education, 2011), 137-8.

Mathematics II Overview

Number and Quantity

The Real Number System

- Extend the properties of exponents to rational exponents.
- Use properties of rational and irrational numbers.

The Complex Number Systems

- Perform arithmetic operations with complex numbers.
- Use complex numbers in polynomial identities and equations.

Algebra

Seeing Structure in Expressions

- Interpret the structure of expressions.
- Write expressions in equivalent forms to solve problems.

Arithmetic with Polynomials and Rational Expressions

Perform arithmetic operations on polynomials.

Creating Equations

Create equations that describe numbers or relationships.

Reasoning with Equations and Inequalities

- Solve equations and inequalities in one variable.
- Solve systems of equations.

Functions

Interpreting Functions

- Interpret functions that arise in applications in terms of the context.
- Analyze functions using different representations.

Building Functions

- Build a function that models a relationship between two quantities.
- Build new functions from existing functions.

Linear, Quadratic, and Exponential Models

- Construct and compare linear, quadratic, and exponential models and solve problems.
- Interpret expressions for functions in terms of the situation they model.

Mathematical Practices

- **1.** Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- **3.** Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- **5.** Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- **8.** Look for and express regularity in repeated reasoning.

Trigonometric Functions

Prove and apply trigonometric identities.

Geometry

Congruence

Prove geometric theorems.

Similarity, Right Triangles, and Trigonometry

- Understand similarity in terms of similarity transformations.
- Prove theorems involving similarity.
- Define trigonometric ratios and solve problems involving right triangles.

Circles

- Understand and apply theorems about circles.
- Find arc lengths and areas of sectors of circles.

Expressing Geometric Properties with Equations

- Translate between the geometric description and the equation for a conic section.
- Use coordinates to prove simple geometric theorems algebraically.

Geometric Measurement and Dimension

Explain volume formulas and use them to solve problems.

Statistics and Probability

Conditional Probability and the Rules of Probability

- Understand independence and conditional probability and use them to interpret data.
- Use the rules of probability to compute probabilities of compound events in a uniform probability model.

Using Probability to Make Decisions

Use probability to evaluate outcomes of decisions.

Number and Quantity

The Real Number System

N-RN

Extend the properties of exponents to rational exponents.

- 1. Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1/3}$ to be the cube root of 5 because we want $(5^{1/3})^3 = 5^{(1/3)3}$ to hold, so $(5^{1/3})^3$ must equal 5.
- 2. Rewrite expressions involving radicals and rational exponents using the properties of exponents.

Use properties of rational and irrational numbers.

3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

The Complex Number System

N-CN

Perform arithmetic operations with complex numbers. [i^2 as highest power of i]

- 1. Know there is a complex number i such that $i^2 = -1$, and every complex number has the form a + bi with a and b real.
- 2. Use the relation $i^2 = -1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.

Use complex numbers in polynomial identities and equations. [Quadratics with real coefficients]

- 7. Solve quadratic equations with real coefficients that have complex solutions.
- 8. (+) Extend polynomial identities to the complex numbers. For example, rewrite $x^2 + 4$ as (x + 2i)(x 2i).
- 9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic polynomials.

Algebra

Seeing Structure in Expressions

A-SSE

Interpret the structure of expressions. [Quadratic and exponential]

- 1. Interpret expressions that represent a quantity in terms of its context. *
 - a. Interpret parts of an expression, such as terms, factors, and coefficients. *
 - b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret $P(1 + r)^n$ as the product of P and a factor not depending on P.
- 2. Use the structure of an expression to identify ways to rewrite it. For example, see $x^4 y^4$ as $(x^2)^2 (y^2)^2$, thus recognizing it as a difference of squares that can be factored as $(x^2 y^2)(x^2 + y^2)$.

Note: ★ Indicates a modeling standard linking mathematics to everyday life, work, and decision-making. (+) Indicates additional mathematics to prepare students for advanced courses.

Write expressions in equivalent forms to solve problems. [Quadratic and exponential]

- 3. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. *
 - a. Factor a quadratic expression to reveal the zeros of the function it defines. *
 - b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. *
 - c. Use the properties of exponents to transform expressions for exponential functions. For example, the expression 1.15^{t} can be rewritten as $(1.15^{1/12})^{12t} \approx 1.012^{12t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. ★

Arithmetic with Polynomials and Rational Expressions

A-APR

Perform arithmetic operations on polynomials. [Polynomials that simplify to quadratics]

1. Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.

Creating Equations A-CED

Create equations that describe numbers or relationships.

- 1. Create equations and inequalities in one variable including ones with absolute value and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. CA *
- 2. Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. *
- 4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. ★ [Include formulas involving quadratic terms.]

Reasoning with Equations and Inequalities

A-REI

Solve equations and inequalities in one variable. [Quadratics with real coefficients]

- 4. Solve quadratic equations in one variable.
 - a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.
 - b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula, and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b.

Solve systems of equations. [Linear-quadratic systems]

7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line y = -3x and the circle $x^2 + y^2 = 3$.

Functions

Interpreting Functions

F-IF

Interpret functions that arise in applications in terms of the context. [Quadratic]

- 4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★
- 5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. *
- 6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ★

Analyze functions using different representations. [Linear, exponential, quadratic, absolute value, step, piecewise-defined]

- Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★
 - a. Graph linear and quadratic functions and show intercepts, maxima, and minima. *
 - b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. *
- 8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
 - a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
 - b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)^{12t}$, and $y = (1.2)^{t/10}$, and classify them as representing exponential growth or decay.
- 9. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Building Functions

F-BF

Build a function that models a relationship between two quantities. [Quadratic and exponential]

- 1. Write a function that describes a relationship between two quantities. *
 - a. Determine an explicit expression, a recursive process, or steps for calculation from a context. *
 - b. Combine standard function types using arithmetic operations. ★

Build new functions from existing functions. [Quadratic, absolute value]

3. Identify the effect on the graph of replacing f(x) by f(x) + k, kf(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. *Include recognizing even and odd functions from their graphs and algebraic expressions for them.*

- 4. Find inverse functions.
 - a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x) = 2x^3$.

Linear, Quadratic, and Exponential Models

F-LE

Construct and compare linear, quadratic, and exponential models and solve problems. [Include quadratic.]

3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *

Interpret expressions for functions in terms of the situation they model.

6. Apply quadratic functions to physical problems, such as the motion of an object under the force of gravity. CA *

Trigonometric Functions

F-TF

Prove and apply trigonometric identities.

8. Prove the Pythagorean identity $\sin^2(\theta) + \cos^2(\theta) = 1$ and use it to find $\sin(\theta)$, $\cos(\theta)$, or $\tan(\theta)$ given $\sin(\theta)$, $\cos(\theta)$, or tan(θ) and the quadrant of the angle.

Geometry

Congruence G-CO

Prove geometric theorems. [Focus on validity of underlying reasoning while using variety of ways of writing proofs.]

- 9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.
- 10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
- 11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Similarity, Right Triangles, and Trigonometry

G-SRT

Understand similarity in terms of similarity transformations.

- 1. Verify experimentally the properties of dilations given by a center and a scale factor:
 - a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged.
 - b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor.

- 2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
- 3. Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.

Prove theorems involving similarity. [Focus on validity of underlying reasoning while using variety of formats.]

- 4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.
- Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Define trigonometric ratios and solve problems involving right triangles.

- 6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.
- Explain and use the relationship between the sine and cosine of complementary angles.
- Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. *
- 8.1 Derive and use the trigonometric ratios for special right triangles (30°, 60°, 90° and 45°, 45°, 90°). CA

Circles G-C

Understand and apply theorems about circles.

- 1. Prove that all circles are similar.
- Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
- 3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.
- (+) Construct a tangent line from a point outside a given circle to the circle.

Find arc lengths and areas of sectors of circles. [Radian introduced only as unit of measure]

5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between degrees and radians. CA

Expressing Geometric Properties with Equations

G-GPE

Translate between the geometric description and the equation for a conic section.

- 1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.
- Derive the equation of a parabola given a focus and directrix.

Use coordinates to prove simple geometric theorems algebraically.

- 4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point (0, 2). [Include simple circle theorems.]
- 6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.

Geometric Measurement and Dimension

G-GMD

Explain volume formulas and use them to solve problems.

- 1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.
- 3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. ★
- 5. Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k^2 , and k^3 , respectively; determine length, area and volume measures using scale factors. CA *
- 6. Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve real-world and mathematical problems. CA

Statistics and Probability

Conditional Probability and the Rules of Probability

S-CP

Understand independence and conditional probability and use them to interpret data. [Link to data from simulations or experiments.]

- 1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").
- 2. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent. *
- 3. Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B. \star
- 4. Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results. 🖈
- 5. Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. *

Use the rules of probability to compute probabilities of compound events in a uniform probability model.

- 6. Find the conditional probability of *A* given *B* as the fraction of *B*'s outcomes that also belong to *A*, and interpret the answer in terms of the model. ★
- 7. Apply the Addition Rule, P(A or B) = P(A) + P(B) P(A and B), and interpret the answer in terms of the model. \star
- 8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), and interpret the answer in terms of the model. \star
- 9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems. *

Using Probability to Make Decisions

S-MD

Use probability to evaluate outcomes of decisions. [Introductory; apply counting rules.]

- 6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). ★
- 7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). ★