MAA American Mathematics Competitions
25th Annual

AMC10 B

Tuesday, November 14, 2023

INSTRUCTIONS

O 0 N

. DONOT TURN TO THE NEXT PAGE UNTIL YOUR COMPETITION MANAGER TELLS YOU TO BEGIN.
~
. This is a 25-question multiple-choice competition. For each question; only one answer choice is correct.

. Mark your answer to each problem on the answer sheet with a #2 pencil. Check blackened answers for accuracy

and erase errors completely. Only answers that are properly. Qarléd on the answer sheet will be scored.

. SCORING:You will receive 6 points for each correct ans‘éer, 1.5 points for each problem left unanswered, and 0

points for each incorrect answer.

<
. Only blank scratch paper, rulers, compasses, and erasers are allowed as aids. No calculators, smartwatches, phones,

or computing devices are allowed. No problem\goﬁ the competition will require the use of a calculator.

. . \
. Figures are not necessarily drawn to scales.
. Before beginning the competition, your competition manager will ask you to record your name on the answer sheet.
. You will have 75 minutes to complete the competition once your competition manager tells you to begin.

. When you finish the competition, sign your name in the space provided on the answer sheet and complete the

demographic information questions on the back of the answer sheet.
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1. Mrs. Jones is pouring orange juice into four identical glasses for her four sons. She fills the first three
glasses completely but runs out of juice when the fourth glass is only % full. What fraction of a glass
must Mrs. Jones pour from each of the first three glasses into the fourth glass so that all four glasses
will have the same amount of juice?
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Carlos went to a sports store to buy running shoes. Running shoes were on sale, with prices reduced
by 20% on every pair of shoes. Carlos also knew that he hado pay a 7.5% sales tax on the discounted
price. He had $43. What is the original (before discount) price of the most expensive shoes he.could
afford to buy?
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3. A 3-4-5right triangle is inscribed in circle A, and a 5 — 12— 13 right triangle is inscribed in circle B.
What is the ratio of the area of circle A to the area of circle B ?
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4. Jackson’s paintbrush makes a narrow strip with a width of 6.5 millimeters. Jackson has enough paint

to make a strip 25 meters long. How many square centimeters of paper could Jackson cover with
paint?

(A) 162,500 (B) 162.5 @625 (D) 1,625,000 (E) 16,250
D5 meters = 2500 centimeters
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5. Maddy and Lara see a list of numbers written on a blackboard. Maddy adds 3 to each number in the
list and finds that the sum of her new numbers is 45. Lara multiplies each number-in the list by 3 and
finds that the sum of her new numbers is also 45. How many numbers are written on the blackboard?
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6. Let Ly =1, L, =3, and Ly42 = Ly4+1 + Ly for n > 1. How many terms in the sequence
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7. Square-ABCD is rotated 20° clockwise about its center to obtain square EFGH, as'shown below
Whatis the degree measure of ZEAB?
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9. The numbers 16 and 25 are a pair of consecutive positive perfect squares whose difference is 9. How

(A) 674

many pairs(oﬁsecutive positive perfect squares have a difference of less than or equal to 2023 ?
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10. You are playing a game. A 2 x 1 rectangle covers two adjacent squares (oriented either horizontally
or vertically) of a 3 x 3 grid of squares, but you are not told which two squares are covered. Your
goal is to find at least one square that is covered by the rectangle. A “turn™ consists of you guessing a
square, after which youare told whether that square is covered®by the hidden rectangle. What is the
minimum number of turns you need to ensure that at least one of your guessed squares is covered by
the rectangle? %
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11. Suzanne went to the bank and withdrew $800. The teller gave her this amount using $20 bills, $50
bills, and $100 bills, with at least one of each denomination. How many different collections of bills

could Suzanpe have received?
(A) 45 @ (C) 36 (D) 28 (E) 32
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12. When the roots of the polynomial
P(x)=(x—-D'(x=2>2x=3)3 - (x—10)1°

are removed from the real number line, what remains is the union of 11 disjoint open intervals. On
how many of these intervals is P (x) positive?
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13. What is the area of the region in the coordinate”ﬁlane defined by

N
=1+ Iy - 1] <12
\
@2 BY ©1 @5 ®1n

Bﬂ exammc —H';e ?Vv?&r‘lies lj &LSon{e \/OI’MCS it's
VIOT, OIIﬁIUAI to notice “H'Wl‘L b‘l 01'10{ [ ) ﬂftﬂaliz
omb represent, the scenario of the orgieal gray j

jvtmt’on l)?A:\S Sym”'ﬂ'ffﬁwl abomt e 3 ano/ X Oxes.
T[/Ierej‘ore on[\nj Vleao( o consilor

|x~1] + lg—'l
when X210, Y31, we have Y4y €3
whet™ % 71, Yl o e have Xy &l



whene e

(use o[:’%mh/c) (use s»‘o/e fuﬁﬂ.)

> So j’or WITO[G ﬁm?k )

15 2xbge = ¥

W
N

\
14. How many ordered pairs of integers (m.n) satisfy the equation m? +mn 4 n? = m?n??
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15. - What is the least positive integer m such that m - 2! - 3!-4!.5!...16! is a perfect square?

(A)30  (B)30.030 @ (D) 1430 (E) 1001
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16. Define an upno to be a positive integer of 2 or more digits where the digits are strictly increasing
moving left to right. Similarly, define a downno to be a positive integer of 2 or more digits where the
digits are strictly decreasing moving left to right. For instance, the number 258 is an upno and 8620
is a downno. Let U equal the total number of upnos and D equal the total namber of downnos. What

is |U — D|?
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17. A rectangular box P has distinct edge lengths a, b, and ¢. The sum of the lengths of all 12 edges of
P-is+13, the sum of the areas of all 6 faces of P is —15‘-, and the volume of P is % What is the length of

the longest interior diagonal co ting two vertices of P ?
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18. Suppose that a, b;and ¢ are positive integers such that

a N b ¢
14 15 _SIO'
Which of the following statements are necessarile' true?

~
I. If ged(a, 14) = 1 or ged(b, 15) = 1 or both, then ged(c, 210) = 1.
II. If ged(c, 210) = 1, then ged(a, 14\61 or ged(b, 15) = 1 or both.
II. ged(c,210) = 1 if and only if ggd??z, 14) = 1 and ged(b, 15) = 1.

(A) L 1II, and III (B) I only (C) I and II only (D) IIT only (E) I¥and III only
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19. Sonya the frog chooses a point uniformly at random lying within the square [0, 6] x [0, 6] in the
coordinate plane and hops to that point. She then chooses a distance uniformly at random in the
interval [0, 1] and a direction uniformly at random from {north, east, south, west}. All her choices
are independent. She now hops the chosen distance in the chosen direction. What is the probability
that she lands outside the square?
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20. Four congruent semicircles are drawn on the surface of a sphere with radius 2, as shown, creating
a closed curve that divides its surface into two congruent regions. The length of the curve is 7 /n.
What is n ?
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21. Each0f 2023 balls is randomly placed into one of 3 bins. Which of the following is closest-to the
probability that each of the bins will contain an odd number of balls?
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22. How manydistinct values of x satisfy | x | — 3x + 220, where | x| denotes the greatest integerless
than or equal to x ?

(A) an infinite number (C)2 (D)3 (E)O
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23. An arithmetic sequence of positive integers has n = 3 terms, initial term a, and common differ-

ence d > 1. Carl wrote down all the terms in this sequence correctly except for one term, which was
off by 1. Tﬁ of the terms he wrote down was 222. Whatisa +d +n?
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24. What is the length of the boundary of the region in the xJ plane consisting of points of the form
Qu =3w,v +4w)where0 <u <1,0<v<l,andO=w =<1?
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25. A regular pentagon with area 1 + +/5 is printed on paper and cut out. All five vertices are folded to
the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?
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