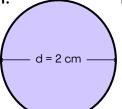
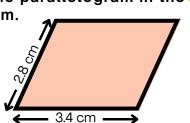
Think Academy Online Campus Perimeter of 2-D Figures

Shape	Name	Perimeter	Example
b=3cm	Triangle	P = (a + b + c)	P = 3.5 + 3 + 2 = 8.5 (cm)
← a=2cm →	Square	P = 4 × a	$P = 4 \times 2 = 8 \text{ (cm)}$
← l=4cm → ↑ w=2cm →	Rectangle	P = 2 (I + w)	P = 2 (4 + 2) = 12 (cm)
a=3.5cm ————————————————————————————————————	Parallelogram	P=2(a+b)	P = 2 (3.5 + 2) = 11 (cm)
, object.	Rhombus	P = 4 × a	P = 4 × 4 = 16 (cm)
$ \begin{array}{c} \leftarrow b=3cm \longrightarrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \leftarrow a=4cm \longrightarrow \end{array} $	Trapezoid	P = (a + b + c + d)	P = 4 + 3 + 2 + 2 = 11 (cm)
- r=2cm →	Circle (diameter=d, radius=r, d=2r)	$\mathbf{P} = \pi \mathbf{d} = 2\pi \mathbf{r}$	$P = 2\pi \times 2 = 4\pi \text{ (cm)}$

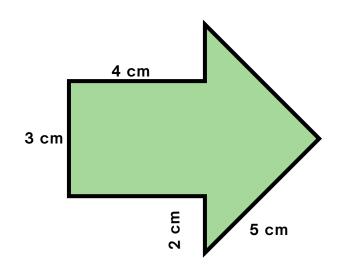

Think Academy Online Campus

Perimeter of 2-D Figures Name:


Nerimeter of Simple Shape

The circumference of a circle with a diameter of 2 cm is _____ cm.

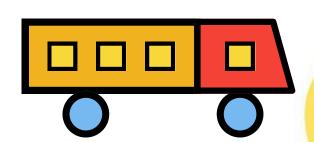
The perimeter of a rhombus is 36 cm. Its side length is _____ cm.


The perimeter of the parallelogram in the 🧹 figure is cm.


A rectangle has a length of 3.2 cm, and its width is half of the length. The perimeter of the rectangle is _____ cm.

Perimeter of Combined Shape

The perimeter of the road sign is _____ cm. A robot's head is composed of two



trapezoids. Each trapezoid has a top base of 20 cm, a bottom base of 30 cm, and both legs are 13 cm long. The perimeter of the robot's head is ____ cm.

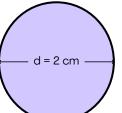
Challenge

A toy truck is shown as in the figure. The red trapezoid has a top base of 6 cm, a bottom base of 14 cm, a height of 6 cm, and a slanted side of 10 cm. The rectangle has a length of 18 cm, and the radius of the circles is 3 cm. The perimeter of the truck is _____ m.

完成打卡练习<mark>拍照</mark>提交活动群 得小助手专属点评

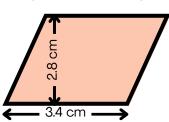
Think Academy Online Campus Area of 2-D Figures

Shape	Name	Area	Example
→ a=3.5cm →	Triangle	A = ½ ah	$A = \frac{1}{2} \times 3.5 \times 2 = 3.5 \text{ (cm}^2\text{)}$
← s=2cm →	Square	$\mathbf{A} = \mathbf{s}^2$	$A = 2^2 = 4 \text{ (cm}^2)$
← l=4cm → l=4cm → w=2cm ↓	Rectangle	$A = 1 \times w$	$A = 4 \times 2 = 8 \text{ (cm}^2)$
← a=3.5cm → h=2cm	Parallelogram	$A = a \times h$	$A = 3.5 \times 2 = 7 \text{ (cm}^2\text{)}$
b=2cm → b=2cm →	Rhombus	$A = \frac{1}{2} ab$	$A = \frac{1}{2} \times 3 \times 2 = 3 \text{ (cm}^2)$
← b=3cm → ↑ 1 2 2 cm ← a=4cm ←	Trapezoid	$A = \frac{1}{2} (a + b) h$	$A = \frac{1}{2} (3 + 4) \times 2 = 7 \text{ (cm}^2)$
- r=2cm →	Circle	$A = \pi r^2$	$\mathbf{A} = \pi \times 2^2 = 4\pi \ (\mathbf{cm}^2)$


Think Academy Online Campus Area of 2-D Figures

Name	•	
INALLIC	•	

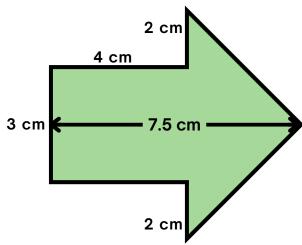
Area of Simple Shape


The area of a circle with a diameter of 2 cm is $\underline{\hspace{1cm}}$ cm².

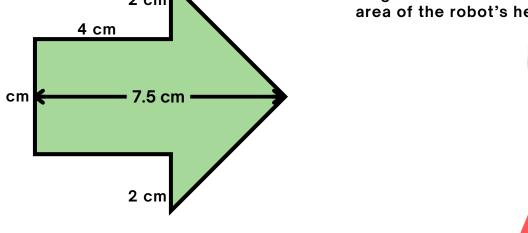
A rhombus has diagonals of 5 cm and 6 cm. Its area is _____ cm².

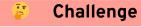
The area of the parallelogram in the figure 🧹

is cm².

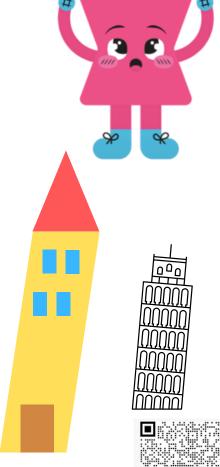


A rectangle has a length of 3.2 cm, and its width is half of the length. The area of the rectangle is _____ cm².


Area of Combined Shape



The area of the road sign is $_{----}$ cm 2 .



A robot's head is composed of two trapezoids. Each trapezoid has a top base of 20 cm and a bottom base of 30 cm. The height of the robot's head is 24 cm. The area of the robot's head is _____ cm².

As shown in the figure, building blocks are stacked to form a house resembling the Leaning Tower of Pisa. The base of the triangle is 20.1 cm, and its height is 30.2 cm. The total height of the figure is 1 meter. The area of the house is _____ cm².

完成打卡练习<mark>拍照</mark>提交活动群 得小助手专属点评

Think Academy Online Campus Surface Area of 3-D Figures

Shape	Net			Surface Area
Cube	side base	side	top	S = 6a²
Cuboid (Rectangular Prism)	side	back base front top	side	S = 2 (lw + lh + wh)
Triangular Prism	side base side side		top	S = 2A _{base} + (a + b + c) h = ah _a + (a + b + c) h
Rectangular Pyramid	side base side side		de	S = A _{base} + 4A _{side} = a ² + 2al

Think Academy Online Campus Surface Area of 3-D Figures

Shape	Net	Surface Area
Cylinder	side	S = 2πr² + 2πrh
Cone	curved part base	S = πr² + πrl
Sphere/Ball		S = 4πR²

To find the surface area of a solid figure, add up the areas of all its faces.

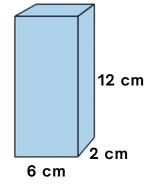
扫码查看老师demo

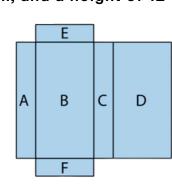
PreA Teacher Jia Ming Insightful & Dynamic

Surface Area of 3-D Figures

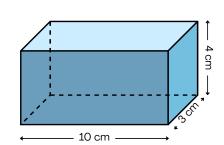
Name:

Classification-Name the Shape





Calculate the Surface Area


The rectangular prism below has a length of 6 cm, a width of 2 cm, and a height of 12 cm.

The area of A = the area of $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ cm² The area of B = the area of $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ cm² The area of E = the area of $\underline{\hspace{1cm}}$ = $\underline{\hspace{1cm}}$ cm²

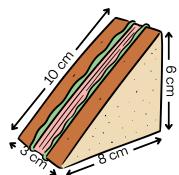
The surface area of the rectangular prism is _____ cm².

The surface area of a cube is 8.64 cm². Its edge length is _____cm.

Surface Area of 3-D Figures

Name:

	<u> </u>	-
7		


The diameter of the base of a cylinder is 5.5 cm and its height is 16 cm. Its surface area is _____ cm².

An artist builds a sculpture shaped like a regular square pyramid. The base edge is 24 cm and the height of the lateral face is 13 cm. The surface area of the sculpture is ____ cm².

A sandwich is cut into a shape like a triangular prism. The ends are triangles with side lengths 6 cm, 8 cm, and 10 cm, with the 6 cm and 8 cm sides perpendicular to each other. The sandwich is 3 cm long. The surface area of the sandwich is _____ cm².

Challenge

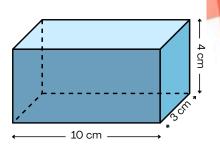
Mia is building a colorful block tower with her favorite toy blocks. She uses three different shapes: a cube at the bottom, a cylinder in the middle, and a cone on top. The cube has an edge length of 8 cm. The cylinder's base has a radius of 4 cm and a height of 6 cm, and it sits perfectly on top of the cube. The cone has the same base as the cylinder, and its slant height is 10 cm. The cone is placed exactly on top of the cylinder. The total surface area of the tower is _____ cm².

完成打卡练习拍照提交活动群 得小助手专属点评

Shape	Net		Volume
a Cube	back side base front	side top	S = a ³
Cuboid	side be	ase side	S = lwh
Triangular Prism	side base side side		S = A _{base} × h = ½ ah _a × h
Rectangular Pyramid	side base side side		S = ½ A _{base} × h = ½ a ² × h

Think Academy Online Campus Volume of 3-D Figures

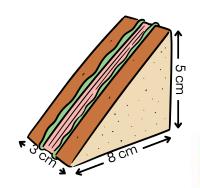
Shape	Net	Surface Area
Cylinder	side	S = πr²h
Cone	curved part base	S = ⅓πr²h
Sphere		S = 4/3 × πR ³


PreA Teacher Alice Li Supportive & Responsible

Think Academy Online Campus Volume of 3-D Figures

N I	
NIAMA!	
Name:	

Calculate the Volume

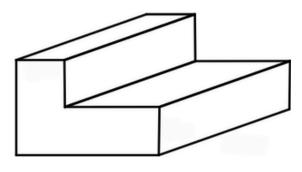


- The volume of a cube is 27 cm³. Its edge length is _____ cm.
- The diameter of the base of a cylinder is 5.5 cm and its height is 16 cm. Its volume is _____ cm³. (π = 3.14)
- An artist builds a sculpture shaped like a regular square pyramid. The length of the base edge is 24 cm and the height of the sculpture is 13 cm. The volume of the sculpture is ____ cm³.

A sandwich is cut into a shape like a triangular prism. The ends are triangles with base 8 cm and height 5 cm, and the sandwich is 3 cm long. The volume of the sandwich is _____ cm³.

Think Academy Online Campus Volume of 3-D Figures

Name:


The radius of a sphere is 2.5 cm. Its volume is _____ cm³. (π = 3.14, Round to two decimal places)

Emma built a block sculpture using her favorite toy blocks. She stacked a small cube on top of a larger rectangular cuboid. The rectangular cuboid at the bottom has a length of 12 cm, a width of 8 cm, and a height of 5 cm. The cube on top has an edge length of 4 cm and sits perfectly on the center of the cuboid. The total volume of Emma's block sculpture is cm³.

Olivia built a stepped block structure using her toy blocks. The structure consists of two rectangular cuboids stacked in a stair-like shape. The lower cuboid has a length of 14 cm, a width of 6 cm, and a height of 4 cm. The upper cuboid has the same length (14 cm) and height (4 cm) as the lower cuboid, but its width is 2 cm. The total volume of Olivia's block structure is _____ cm³.

Challenge

Mia is building a colorful block tower with her favorite toy blocks. She uses three different shapes: a cube at the bottom, a cylinder in the middle, and a cone on top. The cube has an edge length of 8 cm. The cylinder's base has a radius of 4 cm and a height of 6 cm, and it sits perfectly on top of the cube. The cone has the same base as the cylinder, and its height is 10 cm. The cone is placed exactly on top of the cylinder. The volume of the tower is _____ cm³. (π = 3.14, Round to two decimal places)

完成打卡练习<mark>拍照</mark>提交活动群 得小助手专属点评

