Linear Functions: The Features of Parallel and Perpendicular

- The line L is parallel to the line y=3x+1 and passes through the point A(2,3). What is the equation of line *L*?
 - A. y=-3x+3 B. y=3x C. y=3x-3 D. y=3x+2

A linear function is parallel to the line $y=rac{1}{2}x+3$ and passes through the point (-2,-4). What is the equation of this function?

A.
$$y = \frac{1}{2}x - 4$$

A.
$$y = \frac{1}{2}x - 4$$
 B. $y = \frac{1}{2}x - 3$ C. $y = \frac{1}{2}x + 2$ D. $y = \frac{1}{2}x + 3$

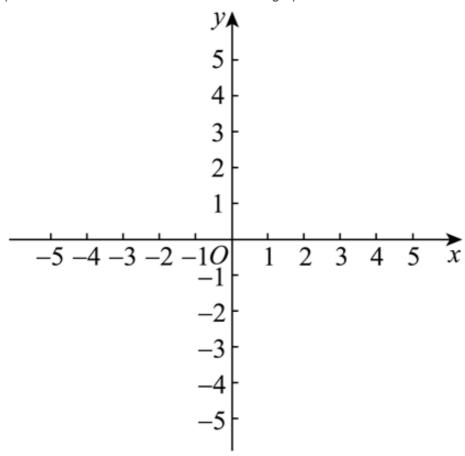
C.
$$y = \frac{1}{2}x + 2$$

D.
$$y = \frac{1}{2}x + 3$$

(3	Given that the line y_2 is parallel to the line $y_1=2x-1$ and passes through the point $(0,-5)$
		what is the equation of y_2 ?

A.
$$y = 2x + 5$$

B.
$$y = 2x - 5$$


C.
$$y = 2x - 3$$

A.
$$y=2x+5$$
 B. $y=2x-5$ C. $y=2x-3$

4	Given that the line $\emph{\textbf{l}}$ is parallel	I to the line $\pmb{y}=\pmb{2x}$ and has a \pmb{y} -intercept of 5, the	equation of line l
	is		

In the Cartesian coordinate plane, the graph of a linear function is parallel to the line $y=-\frac{1}{2}x$ and passes through the point A(-2,3). It intersects the x-axis at point B.

Find the equation of this linear function and sketch its graph.

A line l that passes through point (4,0) is perpendicular to line y=-2x-6. The slope-intercept form of line l is _______.

7	The graph of a linear function is perpendicular to the line $y=x+1$ and passes through t	he
	point (2,3). The equation of this linear function is	

The graph of the linear function y=kx+b is perpendicular to the line y=2x+1 and passes through the point P(-2,-1). The equation of this linear function is ______.

The equation of line l is given as $y=\frac{1}{2}x+4$. Line l intersects the y-axis at point A. Line m passes through point A and is perpendicular to line l. The equation of line m is

- Given that the line passing through points A(-2,m) and B(m,4) is perpendicular to the line 2x+y-1=0, find the value of m.
 - A. 0

- B. -8
- C. 2

D. 10

Linear Functions: The Features of Parallel and Perpendicular

The line L is parallel to the line y=3x+1 and passes through the point A(2,3). What is the equation of line *L*?

A.
$$y = -3x + 3$$

B.
$$y=3x$$

C.
$$y = 3x - 3$$

C.
$$y = 3x - 3$$
 D. $y = 3x + 2$

Answer

Solution Let the equation of line L be y = kx + b where $k \neq 0$.

Since line L is parallel to the line y = 3x + 1, we have: k = 3

Since line L passes through the point (2,3), we substitute x=2 and y=3 into the equation:

$$3 = 3 \times (2) + b$$

Solving for b: b = -3

Thus, the equation of line L is: y = 3x - 3

The answer is C.

A linear function is parallel to the line $y = \frac{1}{2}x + 3$ and passes through the point (-2, -4).

What is the equation of this function?

A.
$$y = \frac{1}{2}x - 4$$

B.
$$y = \frac{1}{2}x - 3$$

C.
$$y = \frac{1}{2}x + 2$$

A.
$$y = \frac{1}{2}x - 4$$
 B. $y = \frac{1}{2}x - 3$ C. $y = \frac{1}{2}x + 2$ D. $y = \frac{1}{2}x + 3$

Answer B

Solution Given that the function is parallel to $y=rac{1}{2}x+3$, its equation can be written as:

$$y=rac{1}{2}x+b$$

Since the function passes through the point (-2, -4), substituting x = -2 and y = -4 gives:

$$\frac{1}{2}\times(-2)+b=-4$$

Solving for b:

$$-1+b=-4$$
, $b=-3$

Thus, the equation of the function is:

$$y = \frac{1}{2}x - 3$$

The answer is B.

Given that the line y_2 is parallel to the line $y_1 = 2x - 1$ and passes through the point (0, -5), what is the equation of y_2 ?

$$A \quad u = 2x + 5$$

$$\mathsf{B.}\ y = 2x - 5$$

$$C. \ y=2x-3$$

A.
$$y = 2x + 5$$
 B. $y = 2x - 5$ C. $y = 2x - 3$ D. $y = -2x - 3$

Answer

Solution Let the equation of the function be y = kx + b.

 \therefore The line y_2 is parallel to the line $y_1 = 2x - 1$,

 $\therefore k=2$.

Substituting the point (0, -5) into the equation: -5 = 0 + b

Solving for b: b = -5

 \therefore The equation of y_2 is: y = 2x - 5

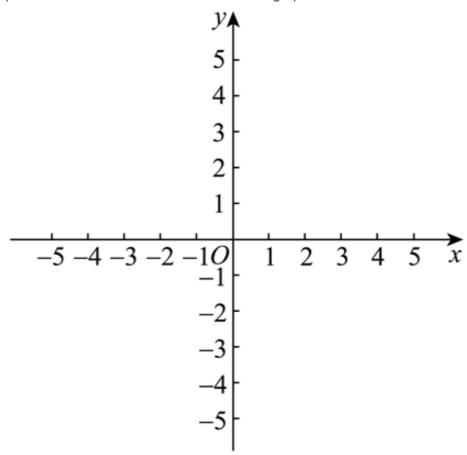
Thus, the correct answer is: B.

Given that the line l is parallel to the line y=2x and has a y-intercept of 5, the equation of line l

y = 2x + 5

Alternative: y = 5 + 2x

Solution Since line l is parallel to the line y = 2x, we assume its equation is of the form: y = 2x + b


Given that the y-intercept is 5, we have: b = 5

Thus, the equation of line l is: y = 2x + 5

Therefore, the final answer is: y = 2x + 5

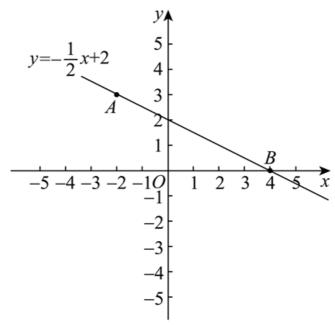
In the Cartesian coordinate plane, the graph of a linear function is parallel to the line $y=-\frac{1}{2}x$ and passes through the point A(-2,3). It intersects the x-axis at point B.

Find the equation of this linear function and sketch its graph.

Answer $y=-rac{1}{2}x+2$

Solution Let the equation of the linear function be: y = kx + b

Since the graph of the function is parallel to the line $y=-\frac{1}{2}x$ and passes through the point


Thus, the equation of the linear function is: $y = -\frac{1}{2}x + 2$

To find the x-intercept, set y=0: $0=-\frac{1}{2}x+2$

Solving for $m{x}$: $m{x}=m{4}$

Therefore, the graph of this function passes through point A(-2,3) and intersects the x-axis at point B(4,0).

The graph of the function is shown below.

A line l that passes through point (4,0) is perpendicular to line y=-2x-6. The slope-intercept form of line l is ______.

Answer $y=rac{1}{2}x-2$

Solution The slope of l is $\frac{1}{2}$, and the y-intercept is -2.

The graph of a linear function is perpendicular to the line y = x + 1 and passes through the point (2,3). The equation of this linear function is ______.

Answer y = -x + 5

Solution
$$m=-1$$
 $y-y_1=m(x-x_1)\Rightarrow y-3=-1(x-2)$ $y=-x+5$

The graph of the linear function y = kx + b is perpendicular to the line y = 2x + 1 and passes through the point P(-2,-1). The equation of this linear function is

Answer
$$y=-rac{1}{2}x-2$$

Alternative:
$$y = -2 - \frac{1}{2}x$$

Solution Since the given linear function is perpendicular to the line y=2x+1, its slope must be the negative reciprocal of 2, which is $-\frac{1}{2}$.

Thus, we assume the equation of the function is: $y = -\frac{1}{2}x + b$

Since the function passes through the point P(-2,-1), we substitute x=-2 and y=-1into the equation: $-1 = -\frac{1}{2}(-2) + b$ -1 = 1 + b

Solving for b: b = -2

Thus, the equation of the function is: $y = -\frac{1}{2}x - 2$

The equation of line l is given as $y = \frac{1}{2}x + 4$. Line l intersects the y-axis at point A. Line mpasses through point A and is perpendicular to line l. The equation of line m is

Answer
$$y = -2x + 4$$

Alternative: y = 4 - 2x

Solution The equation of line l is $y=rac{1}{2}x+4$, when x=0, y=4.

Therefore, the coordinates of point A are (0,4).

Since line m passes through point A and is perpendicular to line l, the slope of line m is the negative reciprocal of the slope of line l. The slope of line l is $\frac{1}{2}$, so the slope of line m is -2

Thus, we assume the equation of line m is y = -2x + b.

Substituting the point (0,4) into the equation, we get: 4 = b

Therefore, the equation of line m is: y = -2x + 4

Given that the line passing through points A(-2, m) and B(m, 4) is perpendicular to the line 2x + y - 1 = 0, find the value of m.

A. 0

B. **-8**

C. 2

D. 10

Answer C

Solution
$$k_{AB}=rac{4-m}{m+2}$$
 , $rac{4-m}{m+2}\cdot (-2)=-1$, $\therefore m=2$.