2025 Sept AMC 10 Week 1 Day 3 - Combination

1	How many non-negative integer solutions does the equation $x+y+z+t=6$ have?				
	A. 72	B. 76	C. 84	D. 90	E. 92
2	If three vertices are chosen at random from a regular decagon, the probability that the chosen				
	three points form a right triangle is () .				
	A. $\frac{1}{4}$ E. $\frac{3}{4}$	B. $\frac{1}{3}$	C. $\frac{1}{2}$	D.	$\frac{2}{3}$
	E. $\frac{3}{4}$				
3	Four volunteers A,B,C , and D are assigned to three soccer fields for volunteer service. Each				
	volunteer must be assigned, and each soccer field must have at least one volunteer. However,				
	$\emph{\textbf{A}}$ and $\emph{\textbf{B}}$ cannot be assigned to the same soccer field. How many different assignment plans				
	are there?				
	A. 24	B. 28	C. 30	D. 36	E. 42
4	A science and technology expo is held in a certain place with 3 exhibition halls. There are 24				
	volunteer slots to be assigned to these 3 halls, with the requirements that each hall receives a				
	least one slot and the numbers of slots assigned to the halls are all different. How many				
	different assignment methods are there?				
	A. 222	B. 244	C. 253	D. 276	E. 284
5	Assign 6 doctors to	o units $A,B,$ and C	for nucleic acid tes	ting, with 2 doctors	assigned to each
	unit. Doctor a cannot go to unit A , and doctor b can only go to unit B . How many different				
	assignment methods are there?				
	A. 18	B. 24	C. 30	D. 36	E. 42