学而思美国ONLINE

小高数学课程体系

Think Academy 小学长期班体系专为K至5年级学生设计,提供专业、系统、全面的全年数学课程,结合北美学生的学习特点与需求,分为校内和竞赛两大体系,其中

- 校内体系会根据孩子的数学进度、学习能力划分为:
 - Core+: 校内同步,夯实基础,稳步提升
 - Honors: 校内超前1年,稳固全A,直通快班
 - Challenge: 校内超前1.5-2年,AP满贯,适当拓展

校内体系超前Common Core 1-2 年,对标私校升学考试(MAP、iSEE、SSAT)和公校期中期末考和公校天才班/分班测(STAR Math、iReady、IOWA,SBA等),确保学生在校内稳固领先。

- 竞赛体系会根据孩子的思维灵活度、新知识点接受度分为:
 - ACE: 竞赛奠基,深度拓展,助力5年级AMC8 AR奖项
 - ACE+: 竞赛集训队,晋级奥赛,专业数学竞赛路径

竞赛体系则系统覆盖 Math Kangaroo(适合1-4年级)、AMC 8(适合4-8年级)等权威数学竞赛核心知识点,帮助学生全面提升数学思维与竞赛能力,助力校内学习与数学竞赛的双向突破,实现长期领先!

不同班层的开设可以确保不同程度的学生都能找到适合的学习路径。所有班层内容都囊括小学数学七大模块 (计算、几何、数论、应用、计数与概率、代数、组合),但**进度 和深度不同**。

	小学					初中						
年级	G 3			G4		G 5		G6				
学期	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	Spring	Summer	Fall	Spring
Core+	N	Math 3	3	Math 4		Math 5		Math 6				
Honors	G3	3 Hono	ors	G4 Honors		G5 Honors		Pre-Algebra				
Challenge	G3 (Challe	nge	G4 (Challe	nge	G5 Challenge		Algeb	ora 1	Intro to Geomet ry	
ACE	G	3 ACI	Ξ	G4 ACE		G5 A	CE	AMC8	B HR	AMC10 Intro		

学而思美国ONLINE

中学竞赛体系学员成绩

2022-2024 AMC8累计获奖学员人数:

Achievement Roll (低年级成就奖)

Honor Roll (全国Top 5%)

DHR (全国Top 1%)

2022-2024 AMC10累计获奖学员人数:

AIME晋级 (全国Top 7%)

Honor Roll (全国Top 5%)

DHR (全国Top 1%)

2024 Think全球IMO获奖人数

7金 1银

Think竞赛课程为什么能 培养上千位获奖学员?

专业竞赛体系,一站式解决竞赛学习

Think Competition根据美国数学竞赛AMC的考纲设计,贴合学 生的考试节奏,在5-6年级学习AMC8,7-8年级学习AMC10,知 识点涵盖竞赛的四大模块:代数,数论,数论,和计数概率,从 而每年实现一个竞赛目标,最终帮助中学生**在进入高中前完成** AMC10的学习,顺利晋级AIME。

优秀竞赛师资,为好成绩保驾护航

Think Competition课程均由多年竞赛授课经验的老师授课,让 孩子可以更高效且轻松的掌握复杂竞赛知识点。

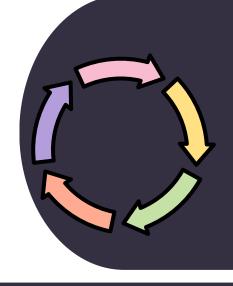
James老师

Dennis老师

Yichen老师 宾大-5年竞赛教龄 杜克大学-4年竞赛教龄 哥大-4年竞赛教龄

和优秀的同龄人一起学习,共同进步

竞赛体系每年的课程均设置入学考试,确保每位学生可以和水平 相近的同龄人一起学习,让竞赛备考不再孤单,孩子们可以互相 激励,共同进步。


课程亮点

家长省心,规划清晰

授课老师为孩子定制学习规划, 全程跟踪学习进度

- **报名课程:** 学习规划老师针对孩子的学习能力与目标,**制定个性化学习方案**。
- **上课期间:**每月和家长**反馈孩子的学习情况**,提供有针对性的学习建议,并**监督落实孩子的提升方案**。
- **期中/期末:** 每学期组织<mark>家长会</mark>,梳理孩子的学习优势和薄弱环节,并制定新学期的学习规划。

每周学习闭环,保障学习效果

- 课前预习: 15分钟课前预习题, 温故而知新
- **课后作业**:每节课**配套作业**题目,老师主动和家长 反馈学生的作业完成情况。
- Office Hour: 免费作业讲解直播课,解答孩子课后 不明白的题目与知识点。
- **作业解析:** 每道作业配套<mark>讲解视频</mark>,随时复习错题

全年学习服务支持

- 专业客服,全年 364 天 Parent APP 在线支持, 快速响应任何问题
- Parents App直接和授课老师联系,沟通更高效, 随时掌握孩子的学情表现。
- 在线作业答疑,给孩子最及时的学习帮助

课程亮点

孩子开心, 学习更高效

精心打磨课堂设计, 让孩子爱上数学

- **互动游戏+情景化教学**,让数学课堂不再枯燥
- 金币激励,孩子可以用金币兑换实体或虚拟奖品, 给孩子更及时的正反馈,让孩子更主动地完成学习 任务和目标。

自研上课App, 强化线上课程体验

- Think Academy 自主研发的上课App,给孩子带来 更丰富的课上互动,包括举手上台,投票作答,选 择填空,集体讨论等互动形式,保障每3分钟一次互 动的频率,提升孩子的上课投入。
- 老师**实时观察每位孩子**的上课情况,保障孩子的学习体验与效果。

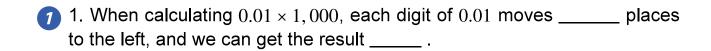
成就感带来底层学习动力

- 不仅课上学习高效,课后也有完善的辅导答疑服务。课后作业有视频解析,每周还有免费office hour解答孩子的问题,保障每节课都能学懂。
- 孩子在校内达到成绩和进度双领先。更愿意投入时间和精力在理科学习上,增强孩子的学习动力,自推成为理科学霸。

Contents

Basic Math · · · · · · · · · · · · · · · · · · ·	01
Mixed Operation/02	
Equation/33	
Geometry/65	
Word Problems/89	
Advanced Math · · · · · · · · · · · · · · · · · · ·	116
Complex Operation & Equation/117	
Geometry/175	
Word Problems/185	
Combinatorics/209	
Crazy Math · · · · · · · · · · · · · · · · · · ·	234
AMC 8/235	
Think One on One/255	
Think Cup/271	

Basic Math



Mixed Operation

Decimals

2. When calculating $1,000 \div 10,000$, each digit of 1,000 moves _____ places to the right, and we can get the result _____ .

2 When calculating 0.78×1000 , each digit of 0.78 moves _____ place(s) to the _____, and we get the result ____.

A. two; left; 07.8 B. three; left; 780 C. two; right; .078 D. three; left; 0.078

E. three; right; 0.0078

(2)
$$3.29 \times 100 =$$

(3)
$$10.01 \times 10 =$$

(4)
$$88.9 \times 1000 =$$

(2)
$$1.2 \times 100 =$$

(3)
$$12.86 \times 10 =$$

(1)
$$6.83 \times 10 =$$

(2)
$$1.9 \times 100 =$$

$$(3) 96.69 \times 10 =$$

6 Calculate: (1) 0.3 ÷ 100 = _____

(2)
$$2 \div 1,000 =$$

(3)
$$0.03 \div 10 =$$

$$(4) 6 \div 1,000 = \underline{\hspace{1cm}}$$

$$(2) 90 - 79.6 = \underline{\hspace{1cm}}$$

$$(3) 35.14 - 29.76 = \underline{\hspace{1cm}}$$

(4)
$$34.7 \times 0.7 =$$

(1)
$$1.3 \times 4 =$$

(2)
$$3.62 \times 5 =$$

(3)
$$2.4 \times 7 =$$

Use long division to calculate:

(1)
$$100.8 \div 9 =$$

(2)
$$46.4 \div 4 =$$

Fractions & Decimals

Choose the right answer:

$$0.125 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}} \div \underline{\hspace{1cm}}$$
A. $\frac{1}{8}$; 1; 8
B. $\frac{1}{2}$; 1; 2
C. $\frac{1}{4}$; 1; 4
D. $\frac{3}{4}$; 3; 4

B.
$$\frac{1}{2}$$
; 1; 2

C.
$$\frac{1}{4}$$
; 1; 4

D.
$$\frac{3}{4}$$
; 3; 4

Write the following fractions as decimals.

$$(1) \frac{24}{25} = \underline{\hspace{1cm}}$$

(2)
$$\frac{27}{40} =$$

(3)
$$1\frac{1}{4} = \underline{\hspace{1cm}}$$

(4)
$$1\frac{2}{5} =$$

3 Write the following decimals as proper fractions or mixed numbers in the simplest form.

Write the followings as decimals.

(1)
$$\frac{2}{5} =$$

(2)
$$\frac{3}{8} =$$

(3)
$$\frac{5}{4} =$$

(4)
$$21\frac{9}{10} =$$

$$(5) 2\frac{8}{25} = \underline{\hspace{1cm}}$$

(6)
$$9\frac{7}{8} =$$

C.
$$\frac{2}{5}$$
; 2; 5

D.
$$\frac{3}{4}$$
; 3; 4

6 Write the followings as decimals.

(1)
$$\frac{7}{8} =$$

(2)
$$\frac{7}{5} =$$

(3)
$$7\frac{3}{4} =$$

(4)
$$17\frac{1}{8} =$$

(5)
$$3\frac{13}{25} =$$

(6)
$$9\frac{17}{50} =$$

Write the followings as proper fractions or mixed numbers in the simplest form.

Write the following fractions as decimals.

$$\frac{13}{5} =$$
______.

$$\frac{7}{4} =$$
_____.

$$\frac{11}{8} =$$
______.

Write the following fractions as decimals.

$$\frac{17}{25} = \underline{\hspace{1cm}}$$
 $\frac{19}{8} = \underline{\hspace{1cm}}$.

$$\frac{11}{40} =$$
_____.

Write the following fractions as decimals. $\frac{9}{4} = \underline{\hspace{1cm}}.$

$$\frac{9}{25} =$$
______.

$$\frac{9}{4} =$$
______.

$$\frac{17}{8} = \underline{\hspace{1cm}}.$$

Roots

Calculate:

Calculate: (1)
$$\sqrt{16}$$
= _____

(2)
$$\sqrt{25}$$
= _____

(4)
$$\sqrt{49}$$
= _____

(1)
$$\sqrt{81} =$$

(2)
$$\sqrt{121}$$
= _____

(3)
$$\sqrt{169}$$
= _____

(4)
$$\sqrt{64} =$$

(1)
$$\sqrt{2^2} =$$

(2)
$$\sqrt{(-2)^2} =$$

(3)
$$\sqrt{(-3)^4} =$$

(4)
$$\sqrt{3^2} =$$

(1)
$$\sqrt[3]{2^3} =$$

(2)
$$\sqrt[3]{27} =$$

(4)
$$\sqrt[5]{(-32)} =$$

(1)
$$\sqrt{72}$$
= _____

(2)
$$\sqrt{48} =$$

(3)
$$\sqrt{45} =$$

(4)
$$\sqrt{108}$$
= _____

(1)
$$\sqrt{12}$$
= _____

(2)
$$\sqrt{32}$$
= ____

(3)
$$\sqrt{64} =$$

(4)
$$\sqrt{27}$$
= _____

(1)
$$\sqrt{16} + \sqrt{25} =$$

(2)
$$\sqrt{25} - \sqrt{16} =$$

(3)
$$\sqrt{9} + \sqrt{81} =$$

(4)
$$\sqrt{49} - 3 =$$

(1)
$$\sqrt{16} + \sqrt{36} =$$

(2)
$$\sqrt{36} - \sqrt{16} =$$

(3)
$$\sqrt{64} + \sqrt{81} =$$

(4)
$$\sqrt{25} - \sqrt{1} =$$

(1)
$$\sqrt{12} + \sqrt{27} =$$

(2)
$$\sqrt{180} - \sqrt{20} =$$

(3)
$$\sqrt{54} + \sqrt{24} =$$

(4)
$$\sqrt{49} - \sqrt{4} =$$

(1)
$$\sqrt{8} + \sqrt{18} =$$

(2)
$$\sqrt{18} - \sqrt{8} =$$

(3)
$$\sqrt{27} + \sqrt{3} =$$

(4)
$$\sqrt{27} - \sqrt{3} =$$

Negative Numbers

Calculate:

(1)
$$(-4) + 7 =$$

(2)
$$3 - 5 =$$

Calculate:

(1)
$$(-2) \times 3 =$$

(2)
$$(-6) \times (-3) =$$

(1)
$$(-3) \times 3 =$$

$$(2) - (-3) \times 3 =$$

(3)
$$(-3) \times (-3) =$$

$$(1) 5 + (-6) = \underline{\hspace{1cm}}$$

$$(2) -8 - (+3) =$$

(4)
$$(-7) - (-8) =$$

(2)
$$(-8) - (-8) =$$

(3)
$$8 - (-8) =$$

$$(2) -4 + 3 = \underline{\hspace{1cm}}$$

$$(3) -4 - 3 =$$

$$(4) - 4 + (-3) = \underline{\hspace{1cm}}$$

$$(5)$$
 -4 (-3) $=$ _____

$$(1) -150 + 250 =$$

$$(2) -15 + (-23) =$$

$$(3) -5 - 65 =$$

$$(4) -26 - (-15) =$$

Oalculate:

(1)
$$(-1.3) + (-1.7) =$$
 _____ (2) $(-11) - 7 =$ _____

$$(2) (-11) - 7 = \underline{\hspace{1cm}}$$

$$(3)(-7) - (-8) =$$

$$(1) -6 \times (-16) =$$

(2)
$$-\frac{1}{3} \times 27 =$$

(3)
$$8 \div (-16) =$$

(4)
$$-25 \div \left(-\frac{2}{3}\right) =$$

$$(1) (-17) + (-85) = \underline{\hspace{1cm}}$$

(1)
$$(-17) + (-85) =$$
 _____ (2) $(-147) + (-276) =$ _____

(3)
$$(-28) + 9 =$$

$$(4) -26 + (+90) = \underline{\hspace{1cm}}$$

$$(5)(-54) + 19 = ____$$

(6)
$$(-192) + 24 =$$

(1)
$$(-2) \times 3 \times 4 \times (-1) =$$

(2)
$$(-5) \times (-3) \times 4 \times (-2) =$$

(3)
$$(-2) \times (-2) \times (-2) \times (-2) =$$

Exponents

Calculate:

(1)
$$31^2 =$$

(2)
$$32^2 =$$

(3)
$$44^2 =$$

(4)
$$45^2 =$$

Calculate:

Calculate:
$$(1) 2^3 =$$

(2)
$$3^2 =$$

(1)
$$3^2 =$$

(2)
$$(-3)^2 =$$

$$(3) -3^2 = \underline{\hspace{1cm}}$$

6 ³ =	5 ² =
2 ³ =	3 ² =

5 Calculate:
$$(1) 6^2 - (-2)^2 =$$

(2)
$$(-6)^2 - 2^3 =$$

(3)
$$(-6)^2 - (-2)^3 =$$

$$(4) (-3)^3 - 3^2 = \underline{\hspace{1cm}}$$

$$(2) - 1^{99} =$$

(3)
$$(-1)^{2019} =$$

(4)
$$(-1)^{2020} =$$

Calculate:

31 ² =	38 ² =	44 ² =
45 ² =	62 ² =	88 ² =
11 ² =	111 ² =	1111 ² =
11111 ² =		

(1)
$$(-12)$$
 - 5 + (-18) - (-35) =

(2)
$$-1^4 - 8 \div (-2)^3 + 2^2 \times (-3) =$$

Oalculate:

$$(1) 4^2 - (-2)^3 = \underline{\hspace{1cm}}$$

(2)
$$5^2 - 2^3 =$$

(3)
$$(-5)^2 - (-2)^2 =$$

$$(4) (-4)^2 - 2^2 = \underline{\hspace{1cm}}$$

Calculate:
$$(1) 2^3 =$$

(2)
$$2^4 =$$

(3)
$$2^5 =$$

(4)
$$2^6 =$$

(5)
$$2^7 =$$

(6)
$$2^8 =$$

$$(7) 2^9 = \underline{\hspace{1cm}}$$

(8)
$$2^{10} =$$

Calculate:
$$(1) 3^2 - (-2)^2 =$$

$$(2) 3^2 - 2^2 = \underline{\hspace{1cm}}$$

(3)
$$(-3)^2 - (-2)^2 =$$

$$(4) (-3)^2 - 2^2 = \underline{\hspace{1cm}}$$

Calculate:

$$(1) 3^2 - (-2)^3 = \underline{\hspace{1cm}}$$

(2)
$$3^3 - 2^2 =$$

(3)
$$(-3)^3 - (-2)^2 =$$

$$(4) (-3)^3 - 2^2 = \underline{\hspace{1cm}}$$

Calculate:

(1)
$$6^2 - (-3)^3 =$$

(2)
$$(-3)^3 - 2^4 =$$

(3)
$$(-5)^2 - (-2)^3 =$$

$$(4) (-4)^3 - 4^2 = \underline{\hspace{1cm}}$$

Calculate: $(1) 2^3 - (-1)^3 =$ _____

$$(2) 2^3 - 1^3 = \underline{\hspace{1cm}}$$

(3)
$$(-2)^3 - (-1)^3 =$$

(4)
$$(-2)^3 - 1^3 =$$

(2)
$$12^2 =$$

(3)
$$13^2 =$$

(4)
$$14^2 =$$

(5)
$$15^2 =$$

(6)
$$16^2 =$$

(7)
$$17^2 =$$

(8)
$$18^2 =$$

(9)
$$19^2 =$$

(10)
$$21^2 =$$

$$(11) 22^2 = \underline{\hspace{1cm}}$$

$$(12) 23^2 = \underline{\hspace{1cm}}$$

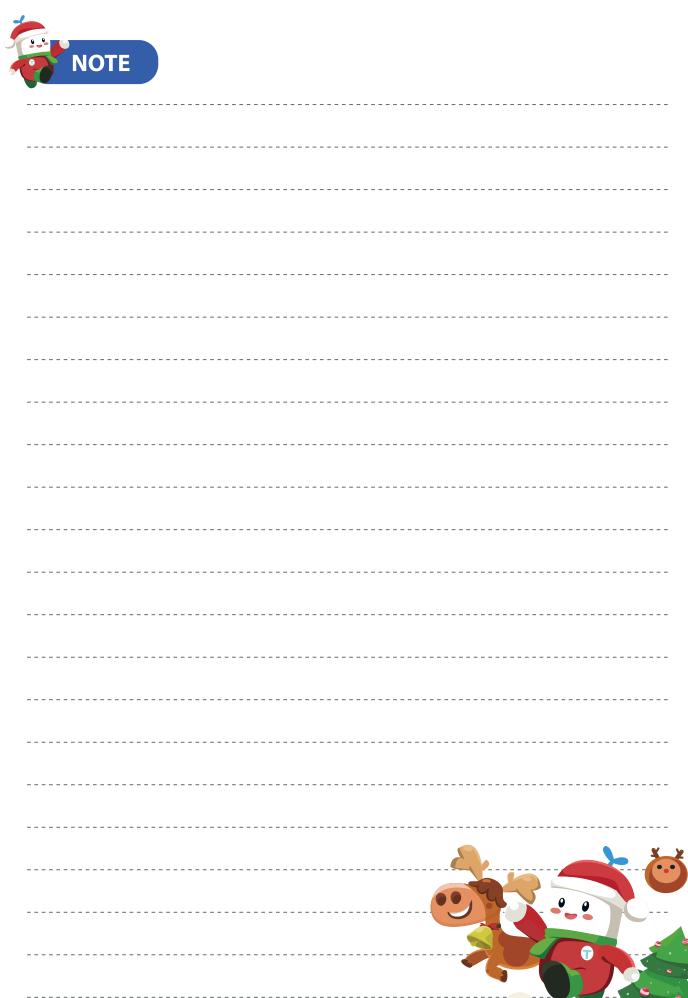
(13)
$$24^2 =$$

$$(14) 25^2 = \underline{\hspace{1cm}}$$

6 Calculate:

(1)
$$2^3 =$$

(2)
$$(-2)^3 =$$


$$(3) -2^3 = \underline{\hspace{1cm}}$$

(4)
$$(-2)^{101} - 2 \times (-2)^{102} =$$

$$(2) -3^4 =$$

(3)
$$\left(-\frac{3}{2}\right)^3 =$$

$$(4) - \frac{3^3}{2} = \underline{\hspace{1cm}}$$

Equation

Basic Equation

Solve the equation x + 2 = 9

Solve the equation x - 10 = 12

Solve the equation (1) 73 + x = 150

(2)
$$68 - x = 14$$

$$(3) x - 50 = 25$$

Solve the equation (1) x + 17 = 24

$$(2) x - 460 = 530$$

Solve the equation (1) 26 + x = 115

$$(2) x - 38 = 169$$

$$(3) x + 47 = 92$$

6 Solve the equation (1) 56 - x = 14

$$(2) x - (25 - 12) = 64$$

Solve the equation (1) x + 409 = 655

(2)
$$x - 4 = 7$$

Solve the equation (1) x + 8 = 13

$$(2) 25 + x = 53$$

$$(3) x - 40 = 15$$

(4)
$$20 - x = 9$$

9 Solve the equation (1)
$$x + 25 - 10 = 27$$

$$(2) x - 24 + 76 = 500$$

$$(1) x + 17 = 24$$

$$(2) x - 460 = 530$$

$$(3) 27 + x = 75$$

Solve the equation
$$5x = 55$$

Solve the equation 6x = 24

Solve the equation $x \div 5 = 7$

Solve the equation $2x + 23 \times 4 = 134$

Solve the equation 3x + 9 = 195

Solve the equation 6x + 17 - 4x = 19

Solve the equation 10x = 6x + 24

Solve the equation 5x + 25x = 90

Solve the equation (1) 4x + 18 = 26

(2)
$$x \div 6 = 4$$

Solve the equation (1) 280 + 7x = 490

$$(2) 4x + 16 = 16$$

$$(3) 8x - 42 = 22$$

Solve the equation (1) 6x = 156

(2)
$$8a \div 2 = 4$$

$$(3) 4x + 9 = 249$$

Solve the equation (1)
$$x \div 18 = 432$$

(2)
$$35 = 5x$$

Solve the equation (1)
$$6x + 10 = 11x$$

(2)
$$3x + 1 = 9 - x$$

Solve the equation (1)
$$5x + 7x = 36$$

$$(2) 9x - 4x = 105$$

(3)
$$7x + 4x - 3x = 23 + 41$$

Solve the equation (1)
$$7x + 3x = 90$$

(2)
$$2x + 15 \times 2 = 48$$

Solve the equation (1)
$$2x - 2 \times 3 = 8$$

$$(2) 66x - 50x = 640$$

(1)
$$3x - 4 \times 6 = 48$$

(2)
$$6x + 8x = 14 \times 3$$

$$(1) 7x + 4 = 102$$

(2)
$$25 \times 12 = 3x$$

Solve the equation (1)
$$y + 8 = 142$$

(2)
$$5m - 4 = 36$$

Solve the equation (1) 4a = 32

$$(2) 3x - 16 = 29$$

33 Solve the equation

$$(1) 12x - 15 = 9$$

$$(2) 2 + 3x = 11$$

Solve the equation (1) 13x + 65 = 169

(2)
$$8x - 3x = 10$$

$$(1) 3x - 8 = 37$$

(2)
$$x \div 48 = 25$$

$$(3) 4x + 45 = 165$$

$$(1) x - 76 = 124$$

(2)
$$x \div 4 = 96$$

$$(3) 4x + 13 = 129$$

Solve the equation (1)
$$2x + 3x = 60$$

$$(2) 36x - 28x = 8$$

(3)
$$100x - x = 198$$

Solve the equation (1)
$$26x = 78$$

(2)
$$14x = 70$$

(3)
$$x \div 12 = 5$$

(4)
$$4x = 52$$

$$(1) 13x - 4x = 81$$

(2)
$$6x - 8 = 4$$

$$(3) 29 \times 2 + 3x = 94$$

(4)
$$8x - 25 \times 3 = 5$$

38 Solve the equation (1) 90x = 45

(2)
$$x \div 0.4 = 2.5$$

$$(3) 40x = 240$$

$$(4) 5 + 3x = 20$$

(5)
$$4x \div 5 = 16$$

$$5x + 28 = 3x, x =$$
_____.

$$7x - 39 = -6x, x =$$
_____.

$$-4x + 36 = 2x, x =$$
_____.

$$-2x - 45 = -5x, x =$$
_____.

$$40 x + 23 = 44, x =$$
_____.

$$x - 31 = 50, x =$$
_____.

$$16x = 80, x =$$
_____.

$$\frac{x}{3} = 12, x =$$
_____.

$$49 8x + 8.2 = 6.1 + 11x, x = \underline{\qquad}$$

$$5x + 13 = 3 + 3.75x, x =$$
_____.

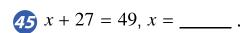
$$4x + 34 = 18, x =$$
_____.

$$3x - 2 = 19, x =$$
_____.

$$-7x + 11 = 88, x =$$
_____.

$$-2x - 13 = -15$$
, $x =$ _____.

43
$$13.3x - 5 = 10 + 3.3x, x =$$
_____.


$$-1.1x + 18 = -6 + 3.7x, x =$$
_____.

$$44 \ 23x + 2 = 94, x =$$
_____.

$$15 - 3x = 51, x =$$
_____.

$$-13x = 91, x =$$
_____.

$$\frac{x}{9} = 11, x =$$
_____.

$$x - 17 = 25, x =$$
_____.

$$15x = 90, x =$$
_____.

$$\frac{x}{7} = 8, x =$$

$$46 - 2x + 14 = 5x, x =$$
_____.

$$-38 + 5x = -14x, x =$$
_____.

$$-42 - 4x = 3x, x =$$
_____.

$$-13x - 63 = -4x, x =$$
_____.

$$47 \ 12 - 8x = 28, x = \underline{\qquad}$$
.

$$\frac{4x}{3} + \frac{2}{3} = 6, x = \underline{\hspace{1cm}}$$

$$11x + 23 = -10, x =$$
_____.

$$16x - (-4) = 8, x =$$
_____.

Fractional Equation

$$5x + 33 = 18, x =$$
_____.

$$\frac{x}{3} - 2 = 9, x = \underline{\hspace{1cm}}.$$

$$-6x + 11 = 53, x =$$
_____.

$$-6x - 13 = -31, x =$$
_____.

$$2 \frac{11}{6}x + \frac{1}{4} = \frac{5}{12}, x = \underline{\hspace{1cm}}$$

$$\frac{7}{6}x - \frac{3}{2}x = \frac{22}{3}, x = \underline{\hspace{1cm}}$$

$$3 \frac{5}{3}x - \frac{3}{4} = \frac{3}{4}x + \frac{1}{12}, x = \underline{\qquad}$$

$$\frac{5}{2}x - \frac{7}{10}x = \frac{13}{20}, x = \underline{\hspace{1cm}}$$

$$4 x + \frac{5}{8} = \frac{23}{24}, x = \underline{\qquad}$$

$$-\frac{13}{5}x = 26, x =$$
_____.

$$\frac{5}{7}x - \frac{8}{21} = \frac{3}{14}, x = \underline{\hspace{1cm}}.$$

$$\frac{7}{18}x + \frac{7}{12}x = \frac{1}{9}, x = \underline{\hspace{1cm}}$$

$$6 \frac{2}{3}x - \frac{3}{4} = \frac{1}{6}x + \frac{3}{2}, x = \underline{\hspace{1cm}}.$$

$$\frac{9}{5}x - \frac{7}{10}x = 2, x = \underline{\hspace{1cm}}.$$

$$\frac{7}{3}x - \frac{1}{2} = \frac{5}{6}, x = \underline{\hspace{1cm}}$$

$$\frac{13}{12}x + \frac{3}{4}x = \frac{11}{3}, x = \underline{\hspace{1cm}}.$$

$$8 \frac{7}{6}x - \frac{7}{8} = \frac{5}{8}x + \frac{1}{3}, x = \underline{\hspace{1cm}}.$$

$$\frac{7}{4}x - \frac{3}{5}x = 2, x = \underline{\hspace{1cm}}.$$

Equation with Percentage

Solve the equation
$$19 - 120\%x = 7$$

Solve the equation
$$40\%x + 25\%x = 26$$

Solve the equation $2x + 0.8 \times 75\% = \frac{4}{5}$

Solve the equation $\frac{2}{3}x + 50\%x = 84$

Solve the equation x - 40%x = 4220%

6 Solve the equation 30%x = 18.6

Solve the equation 2x + 30%x = 9.2

Solve the equation $6 \times 3 - 180\%x = 10.8$

Solve the equation 40%x + 34x = 688

Solve the equation 30 - 20%x = 18

Solve the equation (1) $x \div \frac{5}{7} = 14$

(2)
$$10\%x + 0.2x = 4.2$$

$$(1) 45\%x + 36 = 54$$

(2)
$$x - 32\%x = 34$$

Solve the equation (1) $8x - 75\% \times 5 = 0.25$

(2)
$$4 - 2x = 6\%$$

(1)
$$x \div \left(1 - \frac{1}{9} - 25\%\right) = 2\frac{1}{2}$$

(2)
$$20\%x + 50\% - 15\%x = 1$$

$$(1) 30\% x + 30 = 75$$

(2)
$$(1 + 10\%)x = 132$$

Solve the equation (1) 8.5 + 65%x = 15

(2)
$$0.5x + 25\% = 10$$

$$(1) \ 1 - 25\% x = \frac{1}{4}$$

(2)
$$x - 75\%x = 3$$

$$(3) 1 - 25\%x = \frac{4}{7}$$

$$(1) \frac{2}{3}x + 25\%x = \frac{1}{6}$$

(2)
$$18 + 120\%x = 30$$

(3)
$$x \div 20\% = 600$$

(1)
$$1 - 90\%x = 0.8$$

$$(2) 50\% x - \frac{5}{8} = \frac{1}{4}$$

$$(3) \frac{4}{5} + 80\% x = 1$$

Solve the equation (1)
$$4x + 40\%x = 70.4$$

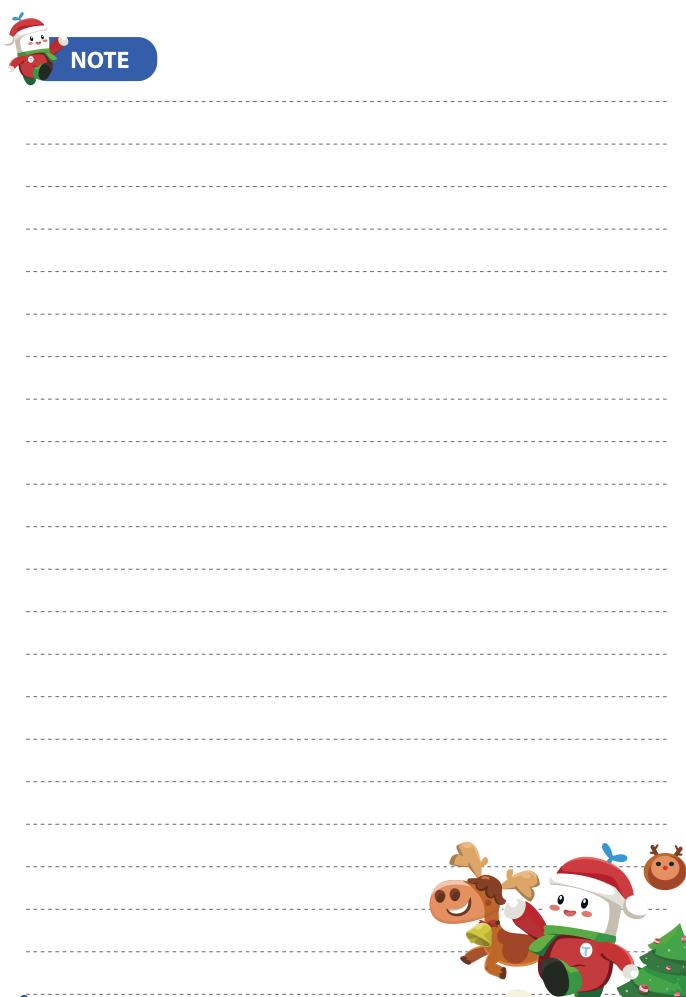
(2)
$$(1 - 60\%)x = 160 \times 25\%$$

(3)
$$x - 20\%x = 48$$

(4)
$$35\%x \div 5 = 1.4$$

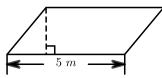
Solve the equation (1)
$$60\%x + 25 = 40$$

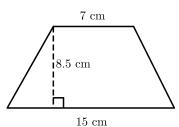
(2)
$$19 - 120\%x = 7$$



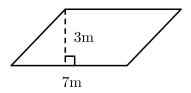
(3)
$$x + 30\%x = 52$$

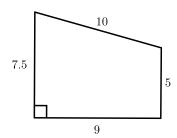
(4)
$$x \div 0.6 = 60\%$$

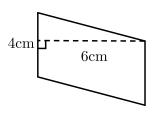


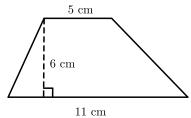


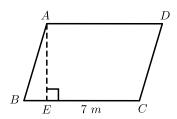
Basic Area

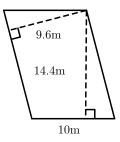

1 As shown in the figure below, the area of the parallelogram is 12 m². Find the length of its height marked in the figure.


2 As shown in the figure below, find the area of the trapezoid.

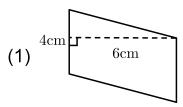

3 The area of the parallelogram is ____ m².

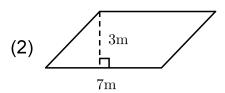

Find the area of the trapezoid below. (Unit: meters)

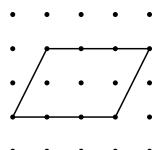

5 The area of the parallelogram is ____ cm².


6 As shown in the figure below, if the top base of the trapezoid increases by 1 cm, and the bottom base decreases by 2 cm, find the area of the new trapezoid.

The area of the parallelogram below is 42 m^2 , so the length of AE is m.

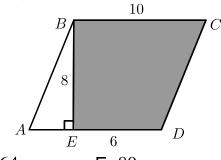



8 The area of the parallelogram is $_{----}$ m².



Calculate the area of each parallelogram below.

 \overline{w} As shown below, the distance between any two adjacent points is 1. The area of the parallelogram is _____ .

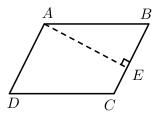

A. 6

B. 8

C. 12

 \bigcap The area of the shaded region BEDC in parallelogram ABCD is

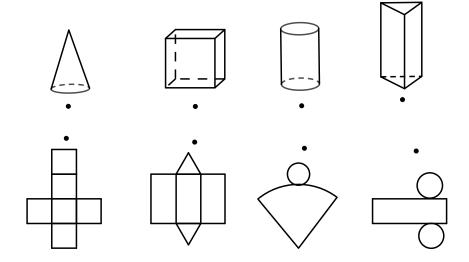
A. 24

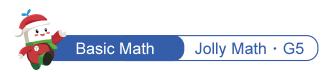

B. 48

C. 60

D. 64

E. 80

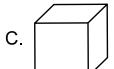

The area of the parallelogram below is 48 cm^2 , AE = 8 cm. What is the length of AD?


Knowing Cubes and Cuboids

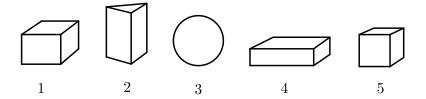
Match the corresponding figures with the nets.

Observe the figures below and fill the blanks.

Number of Faces	 	
Number of Edges	 	


is/are cylinder(s), ____ is/are pyramid(s).

4 Which figure is a cylinder?



В.

_____ is different from the other solids.

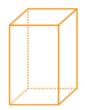
6 Observe the figures below and fill the blanks.

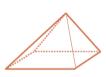
Figure ① has _____ faces, ____ edges.

Figure ② has _____ faces, ____ edges.

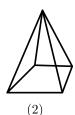
Figure ③ has _____ faces, ____ edges.

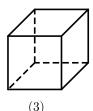
How many faces does each of the following figures have?



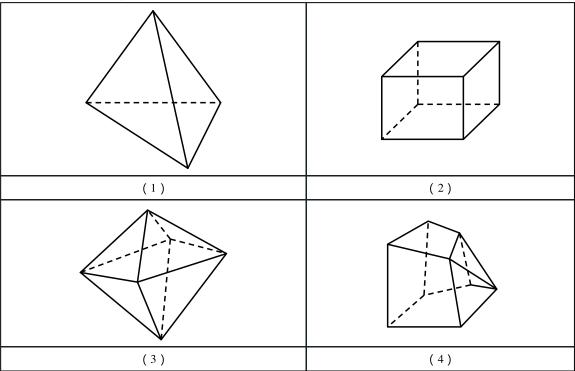

A prism has 12 edges, how many vertices does this prism have?

How many vertices, faces, and edges does each of the following figures have?





10 Observe the figures below and fill the blanks.


Figure	Number of Vertices	Number of Edges	Number of Faces
(1)			
(2)			
(3)			
(4)			

Fill the blanks.

Number of faces		
Shape of the base		
Shape of the other faces		

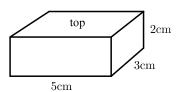
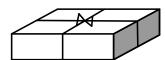
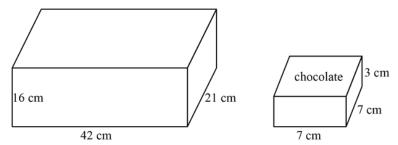

Observe the figures below and fill the blanks.

Figure	Number of Vertices	Number of Faces	Number of Edges
1			
2			
3			
4			


Surface Area and Volume of 3D Figure

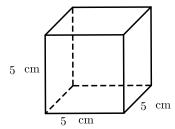
1 View the cubiod below carefully. Answer the following questions.

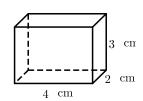
- (1) The length of this cuboid is _____ cm, the width of it is _____ cm, and the height of it is _____ cm.
- (2) The right face of the cuboid is _____ (shape), with the length of ____ cm, the width of ____ cm, and the area of ____ cm^2 .
- (3) The top face of the cuboid is _____ (shape), with the length of ____ cm, the width of ____ cm. The surface that is identical to it is ____ .


2 There's a kind of gift box, with the length of 25 cm, the width of 12 cm, the height of 8 cm, tied up like as shown below. If the bow of the ribbon is 30 cm in length, how many centimeters of the ribbon do we need to wrap a gift?

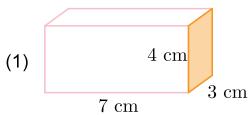
3 The length of the edge of a cube box is 6 cm. Packing this box needs ____ cm² of paper.

A market packages chocolate bars with a large rectangular carton. There are some small rectangular boxes inside the large rectangular carton. The picture below shows the sizes of the carton and the box.

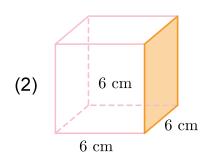



(1) What is the area of cardboard that is needed to make this big carton?

(2) What is the area of paper that is needed to make a small box?



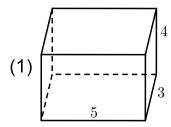
Find the surface area of the solid figures below.

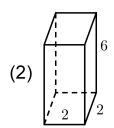


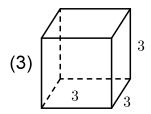
6 Calculate the volume of the following solid figures.

$$V = abh = 7 \times 3 \times 4 = \underline{\qquad} \text{cm}^3$$

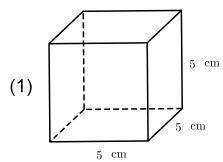
$$V = a^3 = 6^3 = 6 \times 6 \times 6 =$$
_____ cm³

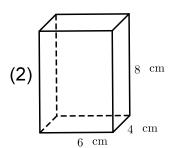



Basic Math

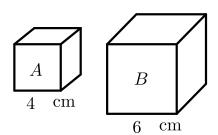

The length of the edge of Eva's cubic saving pot is 80 cm. The volume of the saving pot is ____ cm³.

Find the volumes of the following rectangular prisms. (unit: cm)



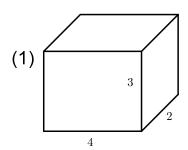


Find the volumes of the following solids.



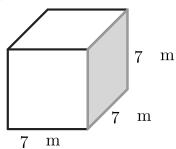
 \bigcirc Cube A's edge : Cube B's edge = \bigcirc

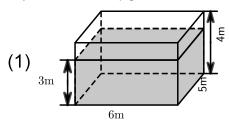
Cube A's surface area: cube B's surface area = _____

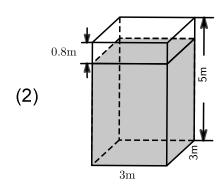

Cube A's volume : cube B's volume = _____

77 Find the surface area and the volume of the solid figures below.

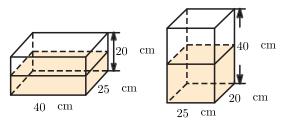
① (unit: m)




 $^{\prime\prime}$ The surface area of a cubic box is $96~\mathrm{cm^2}$, then the volume of the box is $\underline{\hspace{1cm}}$ cm³.



13 Find the surface area and the volume of the solid figure below.


Calculate the volumes of the following containers and the volume of the liquid inside. (Ignore the container thickness.)

A glass container (the thickness of the container is not considered) is 40 cm in length, 25 cm in width, and 20 cm in height. When the container is laid flat, the height of the water inside is 10 cm. If the container is put upright, what is the height of the water in cm?

Use the five pieces of glass below to make a rectangular fish tank and calculate it's volume. (The thickness of the glass is ignored.)

15cm	20 cm	15cm
	15 cm	$45\mathrm{cm}$
45cm	$20\mathrm{cm}$	

A cubic box with the edge length of 8 cm is completely filled with water. If $\frac{7}{16}$ of the water from the box is poured into another container, how much water in cubic centimeters is left in the box?

There is a cubic water tank. Measure it from the inside. The length of the edge of the tank is 40 cm. This water tank can contain at most _____ liters of water. (The thickness of the tank is ignored.)

A. 64000

B. 6400

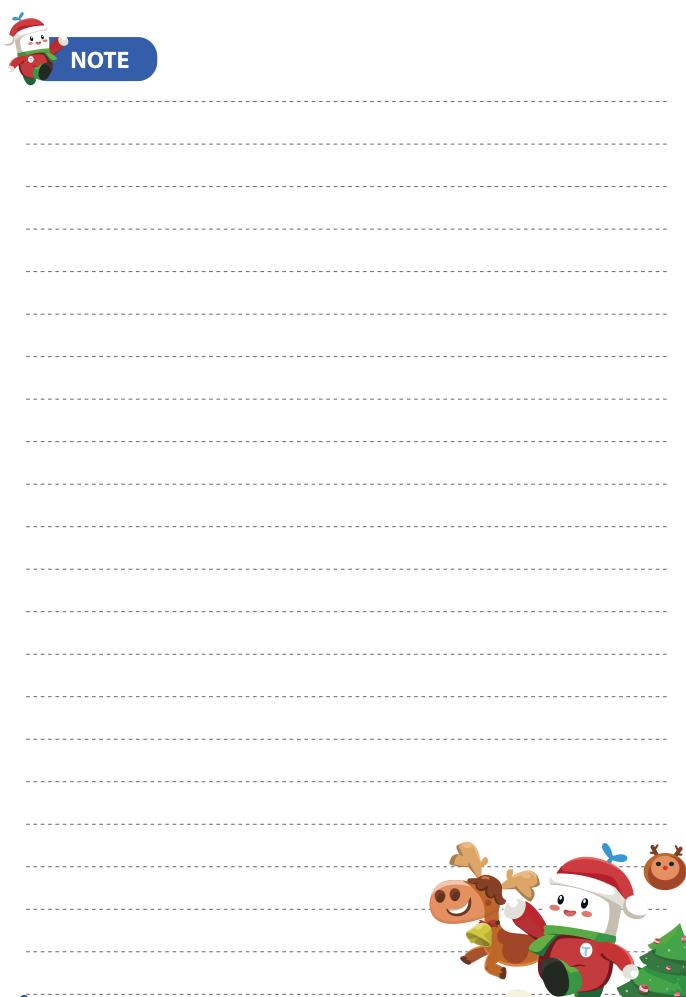
C. 640

D. 64

After putting a stone into the fish tank, The surface of the water rises 3 cm. If the area of the base of the fish tank is 51 cm^2 , what is the volume of the stone?

A cubic box with the edge length of 3 cm is completely filled with water. If $\frac{7}{27}$ of the water from the box is poured into another container, how much water in cubic centimeters is left in the box?

bottles of identical cokes as shown below is 2 L.



There are two kinds of cuboid boxed drinks, beverage A and B. Beverage A's base area is 24 cm^2 and the height is 10 cm. Beverage B's base area is 50 cm^2 and the height is 20 cm.

There is a large cuboid water bottle of which the base area is $400~\rm{cm}^2$ and the height is $15~\rm{cm}$. April is going to pour beverage into the bottle.

- (1) If April pours all the beverage A into the bottle, the height of liquid in the bottle is $___$ cm.
- (2) If April pours all the beverage B into the bottle, the height of liquid in the bottle is $___$ cm.

Word Problems

Knowing Units

1 Building A is 40.75 m tall and Building B is 320 cm taller than Building A. What is the height of Building B in m?

2 A wire is 1 meter long. When 23 centimeters of it are used, there are ____ centimeters left.

3 There are 56.7 kilograms of apples in the storage. What is the weight of these apples in grams?

4	There are 23.3	kilograms of pump	kin in the storage.	What is the weight of
	the pumpkin in	grams?		

Building A is 42.55 m tall and Building B is 110 cm shorter than Building A. What is the height of Building B in m?

6 The distance between A and B is 5230 meters. What is the distance between A and B in kilometers?

Word Problems with Fractions and Decimals

1 There are 20 boxes of electric wire in a hardware store. Each box contains electric wire of 4.2 meters. The unit price of the electric wire is 0.2 dollars per meter. What is the total price of all boxes of electric wire in the hardware store?

2 There are 6 groups of monkeys collecting coconuts and 10 monkeys in each group. They collected 21.6 kilograms of coconuts in total in a day. Each monkey collects the same amount of coconuts in a day. How many kilograms of coconuts did each monkey collect in a day?

3	There a	re 12 v	illag	es in Wo	nd	er Tow	n. Each	villa	age has	100) people.	Each
	person	drinks	1.2	gallons	of	water	today.	ΑII	people	in	Wonder	Town
	drink	ga	llon	s of wate	r ir	n total t	oday.					

Molly bought 8.875 kilograms of bananas and 3.325 kilograms of peaches. What was the total weight of fruits that Molly bought? Rewrite the answer as fraction or mixed number in the simplest form.

5 Cici has 12.6 dollars and Gigi has 9.75 dollars. How much does Cici have more than Gigi? Rewrite the answer as fraction or mixed number in the simplest form.

6 Jennifer made 3.75 liters of bubble tea and 1.375 liters of coffee. What was the total amount of drinks Jennifer made? Rewrite the answer as fraction or mixed number in the simplest form.

Irene only has 5.375 pounds of salmon and 8.375 pounds of shrimp in the fridge. What is the total weight of seafood that Irene has in the fridge? Rewrite the answer as fraction or mixed number in the simplest form.

8 There are 30 boxes of screws in a hardware store. Each box contains 120 screws. The unit price of a screw is 0.2 dollars. What is the total price of all boxes of screws in the hardware store?

There are 3 groups of squirrels collecting hazelnuts and 2 squirrels in each group. They collected 10.8 kilograms of hazelnuts in total in a day. Each squirrel collects the same amount of hazelnuts in a day. How many kilograms of hazelnuts did each squirrel collect in a day?

Mom ate $\frac{2}{5}$ kg of yogurt and I ate 0.6 kg of yogurt. Mom and I ate ____ kg of yogurt in total.

11 Pucky bought 3.125 kilograms of bananas and 9.125 kilograms of watermelons. What was the total weight of fruits that Pucky bought? Rewrite the answer as fraction or mixed number in the simplest form.

Gigi has $8\frac{1}{8}$ dollars and Kiki has 15.75 dollars. How much does Kiki have more than Gigi? Rewrite the answer as both decimal and fraction.

Iii Jimmy only had $3\frac{3}{4}$ kg of beef and $2\frac{2}{5}$ kg of lamp. What was the total amount of meat that Jimmy had? Rewrite the answer as decimal.

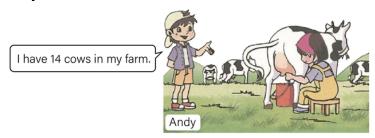
Nina rides for 5.5 km to go to school everyday while Klaus rides for $10\frac{3}{8}$ km to go to school everyday. Klaus rides for _____ km more than Nina everyday (write the answer as decimal).

The area of a test paper is close to ().

A. 11 square meter B. 1100 square centimeter

C. 11 square centimeter D. 11 square millimeter

There are 40 boxes of screws in a hardware store. Each box contains 80 screws. The price of a screw is 0.3 dollars. What is the price of all boxes of screws in the hardware store in total?


(7) There is a rectangular lawn in a garden. It is 4.5 meters wide and the length is twice as long as the width. So what is the area of this lawn?

There are 3 groups of workers cutting wood and there are 4 workers in each group. All those workers cut 20.4 kilograms of woods totally a day. Each worker cut the same amount of woods. How many kilograms of woods did each worker cut in a day?

 \bigcirc A car consumes about 1 liter of petrol to run 2 km. How many liters of petrol does it take to drive 10.6 km?

Aimee is going to travel with her mother. The baggage allowance is 10 kg, and the weight of her mother's baggage is $7\frac{2}{5} \text{ kg}$. The maximal weight of Aimee's baggage is _____ kg in order to avoid paying extra money.

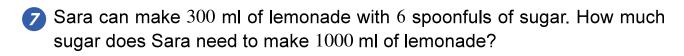
② A cow can produce 29 kg of milk per day. How many kilograms of milk does Andy's cow produce per day?

A acre of forest releases about 0.73 tons of oxygen per day. How many tons of oxygen does 4.3 acres of forest release in a month? (Round to the tenths digit)

Word Problems with Basic Equation

1	There are a total of 67 workers in a workshop. The number of male
	workers is 13 less than that of female workers. Suppose the number of
	male workers is x . We can write the number of female workers as
	Using this equation, we can get that there are male workers
	and female workers.

2	There are 37 students in the class. The number of boys is 5 greater than
	the number of girls. Suppose the number of boys is x . We can then write
	the number of girls as Using this equation, we can get that there
	are boys and girls.


3 A car can run 120 miles consuming 3 gallons of gas. How much gas does it consume to run 400 miles?

4 Simon drinks the same amount of water everyday. He drinks a total of 33 glasses of water in 11 days. How many glasses of water does he drink in total in June?

5 It costs Bran a total of 12 dollars to buy a pen, a ruler, and two pencils. Given that the price of a pen and a ruler is 6 dollars and 3 dollars, respectively, what is the price of a pencil?

6 Ryan is given 140 dollars to buy two pairs of tennis rackets and some tennis balls. The price of each racket is 49 dollars and that of each tennis ball is 1.5 dallars. How many tennis balls can he buy?

Simons takes the same number of pills everyday. He takes a total of 21 pills in a week. How many pills does he take in 15 days?

Uncle Roger can make 200 g fried rice with 2 g green onions. How much green onions does uncle roger need to make 500 g fried rice?

Justin is working in a restaurant. He needs to distribute 12 fortune cookies to 6 customers. How many fortune cookie(s) are needed if there are 10 customers?

11) Potter has 50 dollars in his pocket. He plans to spend 12 dollars on breakfast and 20 dollars on lunch. How much can Potter spend on dinner?

Bobby's mother gives him 15 dollars and asks him to buy a bottle of ketchup at a price of 3 dollars. For the rest of the money, his mother tells him that he can buy whatever he wants. And Bobby wants some chololate for dessert. Each pieces of chocolate costs 1.2 dollars. How many pieces of chocolate can he buy with the rest of the money?

13	James is selling apples and bananas in a farmers' market. He has 87
	fruits in total, and the number of apples is 17 less than the numbe of
	bananas. Suppose the number of apples is x . We can then write the
	number of bananas as Using this equation, we can get that there
	are apples and bananas.

The price for renting a moving truck is 5 dollars per hour for the first 4 hours, with additional hours charged at a rate of 2 dollars. There is also a one-time service fee of 10 dollars. A moving truck can be rented for _____ hours with 36 dollars.

The rate of an hourly hotel room is 10 dollars per hour for the first 3 hours, with additional hours charged at a rate of 8 dollars per hour. There is a one-time service fee of 15 dollars. If James' bill for an hourly room is 77 dollars, he can rent the room for _____ hours.

The price of renting a car is 60 dollars per day for the first 2 days, with additional days charged at a rate of 50 dollars per day. There is also a one-time service fee of 30 dollars. A car can be rented for _____ days with 500 dollars.

Elena is driving at a constant speed of 40 miles per hour. How many miles can she drive in 15 minutes?

The price of a glass of lemonade was 60 cents. Alice bought some glasses of lemonade with 12 dollars. How many glasses of lemonade did she buy?

19	The ratio of the prices of apple, oran	ige and banana is $5:8:3$. Given that
	a kilogram of banana is 1.6 dollars	cheaper than that of a kilogram of
	apple, a kilogram of apple costs	dollars. A kilogram of orange
	costs dollars and a kilogram of	of banana costs dollars.

Bran is walking at a constant speed of 50 meters per minute. How many meters can he walk in 12 seconds?

21 On average, Amy can read 15 pages of a 180-page fairy tale book each day. How many days does it take her to finish reading the book?

Dennis is driving a car on a highway at a constant speed of 60 miles per hour. How many miles can he drive the car for 10 minutes?

23	Star	can	deco	rate 8	cupca	akes	per	hour,	and	she	wants	to	decor	ate	60
	cupc	akes	s for a	ı party	. How	man	y mii	nutes	will it	take	her to	pr	epare	all	the
	cupc	akes	s?												

There are three trees, A, B, and C. The ratio of their heights is 2:3:5. Given that C is 30 ft higher than A, the height of A is _____ ft. The height of B is _____ ft.

25	There ar	e three	sticks,	A, B,	and C .	The	ratio	of their	r lengths	is 3:	4:5.
	Given th	at C is	20 cm	longei	than <i>A</i>	, the	lengt	th of A	is	cm.	The
	length of	<i>B</i> is	cm	and t	he leng	th of	C is $_$	c	m.		

Advanced Math

Mixed Operation

Calculate:

$$(1) -9 + 38 - 24 + 20 =$$

(2)
$$(-27) + 31 - (-33) + (-39) =$$

(3)
$$-7.25 + \left(-\frac{1}{4}\right) + 2.25 - (-1.25) = \underline{\hspace{1cm}}$$

$$(4) -1\frac{1}{7} + (-7) + |-3 - 3| + \left(0 - 3\frac{6}{7}\right) = \underline{\hspace{1cm}}$$

$$|11 - 9 - 27 - (-14)| = \underline{\hspace{1cm}}$$

$$|-9 \times 9 + 4 \times 5 - 11| =$$

$$|-63 \div 7 \times 3 + 60 \div 4| =$$

$$3 13 \times (-4) - 12 \times (4 - 7) = \underline{\hspace{1cm}}$$

$$32 \div 8 + (37 - 45) - 16 =$$

$$4 |14.4 \div (-36) - 4| + 3 \times (-\frac{14}{5}) = \underline{\hspace{1cm}}$$

$$|-2| \times 1.25 + (-\frac{7}{8}) =$$

$$5 \ 2^{-5} \times 4^3 = \underline{\hspace{1cm}}$$
.

$$\frac{5^{10}}{5^7} = \underline{\hspace{1cm}}$$
.

$$(\frac{3^2}{4})^2 = \underline{\qquad}$$
.

$$(\frac{7}{5})^{-2} = \underline{\qquad}$$
.

$$55 + 150 \div (2^4 - 1097^0) + (40^{40} \times 0 - 47) =$$

$$(-2.025 \times 5 - |-\frac{9}{8}|) \times 4 = \underline{\hspace{1cm}}$$

$$|-4 \times (-5.25)| \div |(-4)^2 - 9| =$$

8
$$|12 \times (-1.5) - 23 - (-51)| =$$

$$|11 \times 12 - 8 \times 12 - 13| =$$

$$|-96 \div 6 \times 4 + 14 \times 4| =$$

$$9 |10 \times (7 - 13)| \div (-3) \times (-1.5) =$$

$$1.75 \div (-7) \times 8 - (-\frac{9}{4}) = \underline{\hspace{1cm}}$$

$$10 + 7 - 20 - (-15)| =$$

$$|-4 \times 5 + 3 \times 7 - 9| =$$

$$|-42 \div 7 \times 5 + 72 \div 12| =$$

$$0$$
 $-5.2 \times 5 - |-\frac{6}{5}| + (-0.8) = _____$

$$|-4 \times (-5.25)| + |(-3)^2 - 10| =$$

(1)
$$\left| -4\frac{3}{5} \right| + (-2.4) + \left| -(3.4) \right| + \left| -3\frac{2}{5} \right| = \underline{\qquad}$$

$$(2) \left| 0 - \frac{1}{2} \right| + \left| \frac{1}{2} - \frac{2}{3} \right| + \left| \frac{2}{3} - \frac{3}{4} \right| + \dots + \left| \frac{48}{49} - \frac{49}{50} \right| = \underline{\hspace{1cm}}$$

13 Calculate:

$$(1) \left| -1\frac{67}{99} \right| + (-11.01) - |-8.99| + \left| -1\frac{32}{99} \right| = \underline{\hspace{1cm}}$$

$$(2) \left| \frac{99}{100} - \frac{100}{101} \right| + \left| \frac{100}{101} - \frac{101}{102} \right| + \left| \frac{101}{102} - \frac{102}{103} \right| + \dots + \left| \frac{998}{999} - \frac{999}{1000} \right| = \underline{\hspace{1cm}}$$

Exponents

$$\frac{1}{16^2} =$$
_____.

$$\frac{(-3)^5}{3^3} = \underline{\hspace{1cm}}.$$

$$\frac{(-2)^{10}}{2^{13}} = \underline{\qquad}.$$

$$\frac{-999^{-4}}{999^{-3}} = \underline{\hspace{1cm}}.$$

2 Calculate:
$$\frac{9^8}{9^6} =$$
____.

$$\frac{9^8}{9^6} =$$
______.

$$\frac{11^2}{11^4} =$$
______.

$$\frac{(-2)^{13}}{2^{14}} = \underline{\hspace{1cm}}.$$

$$\frac{-1^{100}}{(-3)^2} = \underline{\hspace{1cm}}.$$

$$\frac{3}{9^3} = \underline{\qquad}$$

$$\frac{-2^3}{4^2} =$$
_____.

$$\frac{(-2)^{99}}{2^{100}} = \underline{\qquad}.$$

$$\frac{-5^4}{25^2} =$$
_____.

$$\frac{3^8}{3^5} = \underline{\qquad}$$

$$\frac{4^2}{4^4} =$$
______.

$$\frac{(-1)^{13}}{(-1)^{26}} = \underline{\qquad}.$$

$$\frac{-1^{13}}{(-1)^{10}} = \underline{\hspace{1cm}}.$$

Complex Operation & Equation

$$\frac{5}{9^2} = \underline{\qquad}$$

$$\frac{(-2)^4}{4^3} = \underline{\hspace{1cm}}.$$

$$\frac{(-2)^{13}}{2^{14}} = \underline{\hspace{1cm}}.$$

$$\frac{-5^4}{5^3} =$$
_____.

$$\frac{12^{-3}}{12^{-4}} = \underline{\hspace{1cm}}.$$

$$\frac{3^2}{3^{-1}} = \underline{\hspace{1cm}}$$
.

$$\frac{(-3)^{-3}}{(-3)^{-5}} = \underline{\hspace{1cm}}.$$

$$\frac{-3^{-1}}{(-3)^{-2}} = \underline{\hspace{1cm}}.$$

Recurring Decimals

Convert $0.\overline{51}$ to a fraction: $100 \times 0.\overline{51} =$ _____.

$$33 \times 0.\overline{51} =$$
_____.

$$0.\overline{51} =$$
_____.

2 Convert $0.\overline{78}$ to a fraction: $100 \times 0.\overline{78} =$ _____.

$$99 \times 0.\overline{78} =$$
_____.

3 Convert $0.\overline{51}$ to a fraction and calculate:

$$0.\overline{51} = \underline{\hspace{1cm}}$$
.

$$99 \times 0.\overline{51} =$$
_____.

$$100 \times 0.\overline{51} = \underline{\hspace{1cm}}.$$

4 Convert $0.1\overline{4}$ to a fraction and calculate:

$$0.1\overline{4} =$$
_____.

$$90 \times 0.1\overline{4} =$$
_____.

$$18 \times 0.1\overline{4} =$$
_____.

5 Convert
$$0.\overline{69}$$
 to a fraction:

$$100 \times 0.\overline{69} =$$
_____.

$$99 \times 0.\overline{69} =$$
_____.

$$0.\overline{69} =$$
______.

6 Convert
$$0.\overline{27}$$
 to a fraction:
 $100 \times 0.\overline{27} =$ _____.

$$99 \times 0.\overline{27} = \underline{\hspace{1cm}}.$$

$$0.\overline{27} =$$
_____.

Complex Operation & Equation

Order the following numbers from least to greatest: 0.321, $0.3\overline{21}$, $0.32\overline{1}$,

$$\frac{9}{28}$$
, $\frac{40}{125}$.

A.
$$0.321 < \frac{9}{28} < 0.32\overline{1} < 0.3\overline{21} < \frac{40}{125}$$

B.
$$0.3\overline{21} < \frac{9}{28} < 0.321 < \frac{40}{125} < 0.32\overline{1}$$

C.
$$\frac{40}{125} < 0.321 < \frac{9}{28} < 0.3\overline{21} < 0.32\overline{1}$$

D.
$$\frac{40}{125} < 0.321 < 0.32\overline{1} < 0.3\overline{21} < \frac{9}{28}$$

Order these numbers from least to greatest.

$$0.64, \frac{7}{11}, 0.\overline{64}, 0.6\overline{4}$$

Order the following numbers from least to greatest: 0.475, $0.4\overline{75}$, $0.47\overline{5}$, $\frac{119}{250}$, $\frac{39}{80}$.

A.
$$0.475 < \frac{39}{80} < 0.47\overline{5} < 0.4\overline{75} < \frac{119}{250}$$

B.
$$0.4\overline{75} < \frac{39}{80} < 0.475 < \frac{119}{250} < 0.47\overline{5}$$

C.
$$\frac{119}{250} < 0.475 < \frac{39}{80} < 0.47\overline{5} < 0.47\overline{5}$$

D.
$$0.475 < 0.47\overline{5} < 0.4\overline{75} < \frac{119}{250} < \frac{39}{80}$$

70 Convert the following recurring decimals into fractions:

(1)
$$0.\overline{45} = \underline{}$$

(2)
$$3.\overline{639} = \underline{}$$

(3)
$$0.\overline{288} = \underline{\hspace{1cm}}$$

77 Convert the following recurring decimals into fractions:

$$(1) 0.\overline{81} = \underline{\hspace{1cm}}$$

(2)
$$8.\overline{63} =$$

(3)
$$0.\overline{592} = \underline{\hspace{1cm}}$$

Complex Equation

Solve the equation $(x-4) \div 75 = 2$

Solve the equation 4(x-3) + 6x = 28

Solve the equation $4(x+5) \div 3 - 6 = 10$

Solve the equation $25(x+4) \div 5 = 24$

Solve the equation 15(x-4) = 12x

6 Solve the equation 3(x + 1) - 2(x + 2) = 10

Solve the equation 3(x+2) = 5x - 4

Solve the equation $5(x+3) \div 6 \times 3 = 20$

$$4 \times (x - 3) = 3 \times (2 + x)$$

Solve the equation 4(2x-1) - 3x = 14

Solve the equation $(7x + 3) \div 4 = 13$

Solve the equation $(x + 1) \times 4 = 80$

Solve the equation $7(x+5) \div 3 = 21$

Solve the equation -5 = 5x - 7(1 - x)

Solve the equation $3(x-2) \div 5 + 6 = 15$

Solve the equation 3(2x-1) = 4(3-x)

Solve the equation $7x + 4 \times (28 - x) = 222 + 2x$

$$4[2(9-5x)-1]-2[1+3(9-5x)]=2$$

(1)
$$5x = (x - 50) \times 6$$

(2)
$$3(4x-2) - 2(3x+3) = 9 - 8x$$

(1)
$$(36 + x) \times 4 \div 2 = 336$$

(2)
$$6(5-x) - 3(4x+2) = 4(3x-7) - 8$$

Solve the equation (1) 2(x-1) + 3x = 18

$$(2) 18 (x + 15) - 5x = 660$$

Solve the equation (1) 6(4x + 12) = 120

(2)
$$3x = 2(36 + x) + 30$$

Solve the equation (1) 12x - 4(x - 2) = 28

$$(2) 12x - 2(5+x) = 20$$

(1)
$$(3x - 4) \div 8 = 7$$

$$(2) 6(x+8) = 54$$

Solve the equation (1)
$$(x + 17) \div 3 = 14$$

$$(2) 4 (y + 1) = 6 (y - 1)$$

$$(1) 5(x+3) = 3(x+5)$$

$$(2) 3(15 - 2x) + 12 = 85 - 10x$$

Solve the equation (1)
$$6(x-5) = 126$$

(2)
$$(8 - 2x) \times 31 = 124$$

(1)
$$(3x + 16) \div 7 + (2x + 7) \div 3 = 2x + 1$$

$$(2) 5x - 2(2x - 1) = 8$$

Solve the equation (1)
$$25(x + 4) = 100$$

(2)
$$(16 - 2x) \div 3 = 4$$

$$(3) 30 - 2(5 - x) = 4x$$

Solve the equation (1)
$$56x = 42(x + 2)$$

$$(2) 3(2x-1) = 4(3-x)$$

(3)
$$(x - 8 + 10) \div 2 = 1$$

(1)
$$10x + 3(x + 1) = 5x + 14$$

$$(2) 14x - (5x + 7) = 7x$$

(3)
$$(3x + 16) \div 7 + (2x + 7) \div 3 = 2x + 1$$

32 Solve the equation (1)
$$7x + 2 \times 10 = 55$$

(2)
$$(28 + x) \times 2 = 104$$

(3)
$$(x + 1) \div 8 = 24$$

33
$$4(x + 17) = 76, x =$$
_____.

$$-11(-25 - x) = 55, x =$$
_____.

$$34 \ 4(x+4) = 64, x = \underline{\hspace{1cm}}.$$

$$-5(x-2) = 25, x =$$
_____.

35
$$\frac{1}{7}(x-\frac{7}{6}) = \frac{1}{12}, x = \underline{\hspace{1cm}}$$
.

$$-3(x-\frac{3}{2}) = 5, x = \underline{\hspace{1cm}}.$$

$$36 - 18(x - \frac{3}{2}) = 27(\frac{4}{3} - x), x = \underline{\qquad}.$$

$$\frac{15}{4}(\frac{4}{5}x - \frac{7}{20}) = -\frac{3}{2}(\frac{1}{4} - 4x), x = \underline{\hspace{1cm}}.$$

$$37 \ 0.2(3x+2) = 4 - 1.2x, x = \underline{\hspace{1cm}}.$$

$$-2.5(x-3) = 3 + 0.5x, x =$$
_____.

38
$$1.5(11x + 2) = 12.5 - 2.5x, x =$$
_____.

$$-1.2(x-5) = -4.8 + 2.4x, x = \underline{\hspace{1cm}}.$$

$$39 -14 + 15(x - 2) = -2x + 7, x = \underline{\qquad}.$$

$$-3x + (8x - 9) = 8 - (3x - 7), x =$$
_____.

$$3(x - \frac{1}{6}) = -8(\frac{1}{4} - x), x = \underline{\qquad}.$$

$$5(\frac{1}{2}x - 4) = -6(\frac{1}{3} - 2x), x = \underline{\hspace{1cm}}.$$

$$41 4 - 3(x+2) = 2x + 8, x = \underline{\hspace{1cm}}.$$

$$3x + (6x - 10) = 3 - (x - 7), x =$$
_____.

$$42 -18(x - \frac{3}{2}) = 27(\frac{4}{3} - x), x = \underline{\qquad}.$$

$$\frac{15}{4}(\frac{4}{5}x - \frac{7}{20}) = -\frac{3}{2}(\frac{1}{4} - 4x), x = \underline{\hspace{1cm}}.$$

43
$$1.9(-10x + 5) = 1.5 + x, x =$$
_____.

$$1.4(4x - 13) - 5 = -2.4x - 22, x =$$
_____.

44
$$2.3(4x + 5) - 12.2 = 4.9 - 10.8x, x =$$
_____.

$$14 + 1.7(9x + 10) = 7.3x + 38, x =$$
_____.

45
$$0.55(4x + 14) = 12 - 2.8x, x =$$
_____.

$$1.7(4x + 17) = -1.2x + 32.3, x =$$
_____.

$$\frac{7}{9}(x-\frac{1}{7})=1, x=\underline{\qquad}.$$

$$-\frac{5}{7}(x-1) = \frac{15}{14}, x = \underline{\hspace{1cm}}.$$

$$2(x+\frac{5}{12})=\frac{1}{3}x, x=\underline{\qquad}$$
.

$$-\frac{5}{4}(x-1) = \frac{7}{12} - \frac{2}{3}x, x = \underline{\hspace{1cm}}.$$

48
$$-4x - \frac{2}{3} = -\frac{19}{4}(x + \frac{2}{19}), x = \underline{\qquad}$$

$$\frac{2}{3}(-\frac{3}{4}x+1) = \frac{5}{4}, x = \underline{\hspace{1cm}}.$$

$$\frac{49}{2}\left(x-\frac{1}{3}\right)+\frac{7}{4}=\frac{5}{12}, x=\underline{\hspace{1cm}}.$$

$$\frac{1}{2}x - \frac{1}{3}(x + \frac{2}{3}) = \frac{1}{6}, x = \underline{\hspace{1cm}}.$$

$$50 \ 1.6(4x+10) = 13 - 1.6x, x = \underline{\hspace{1cm}}.$$

$$1.7(3x + 20) - 3 = 4.9x - 13, x =$$
_____.

51
$$1.25(16x + 4) - 1 = 13 + 2x, x =$$
_____.

$$9 + 0.44(10x - 15) = -3.6x - 4, x =$$
_____.

$$52 5.25(12x - 12) = 3 + 8x, x = ____.$$

$$3.375(16x + 4) = -x - 8.5, x =$$
_____.

$$\frac{2}{3}(x+\frac{3}{2})-\frac{1}{4}=\frac{13}{6}, x=\underline{\hspace{1cm}}.$$

$$\frac{1}{12}x - \frac{3}{2}(x + \frac{3}{2}) = -\frac{11}{12}, x = \underline{\hspace{1cm}}.$$

$$\frac{54}{8}(5x - \frac{1}{8}) = 1, x = \underline{\qquad}.$$

$$-\frac{5}{2}(3x-1) = \frac{25}{8}, x = \underline{\hspace{1cm}}.$$

$$4(x+\frac{1}{2}) = \frac{16}{9}x, x = \underline{\hspace{1cm}}.$$

$$-\frac{7}{4}(2x-1) = \frac{7}{2} + \frac{3}{4}x, x = \underline{\hspace{1cm}}.$$

$$\frac{5}{4}x - \frac{1}{12} = \frac{17}{12}(x + \frac{16}{17}), x = \underline{\hspace{1cm}}.$$

$$\frac{1}{3}(-\frac{9}{4}x+1) = \frac{3}{8}, x = \underline{\hspace{1cm}}.$$

$$57 \ 1.5(8x+10) = 4+x, x = \underline{\hspace{1cm}}.$$

$$1.375(4x + 8) - 3 = 3.5x - 22, x =$$
_____.

58
$$1.75(12x + 2) - 1 = 7 - 1.5x, x =$$
_____.

$$-9 + 0.46(10x + 4) = 4.4x - 2, x =$$
_____.

69
$$0.125(16x + 12) = -2 + 2.5x, x =$$
_____.

$$7.75(6x + 8) = 4.5x - 32.5, x =$$
_____.

$$\frac{1}{4}(x-\frac{1}{2})-\frac{3}{4}=\frac{5}{8}, x=\underline{\hspace{1cm}}.$$

$$\frac{5}{6}x - \frac{2}{3}(x + \frac{3}{2}) = 2\frac{1}{2}, x = \underline{\hspace{1cm}}.$$

$$\frac{1}{3}(x - \frac{1}{3}) = 1, x = \underline{\hspace{1cm}} .$$

$$-\frac{5}{4}(x-1) = \frac{15}{4}, x = \underline{\hspace{1cm}}.$$

$$62 \ 3(x+\frac{5}{6}) = \frac{1}{6}x, x = \underline{\hspace{1cm}}.$$

$$-\frac{3}{2}(x-1) = \frac{7}{4} + \frac{1}{4}x, x = \underline{\hspace{1cm}}.$$

63
$$2x - \frac{1}{3} = \frac{3}{2}x, x = \underline{\hspace{1cm}}$$
.

$$-\frac{8}{3}(\frac{1}{2}x-2) = \frac{56}{3}, x = \underline{\qquad}.$$

64
$$5x - \frac{1}{3} = \frac{17}{3}(x + \frac{4}{17}), x = \underline{\hspace{1cm}}$$

$$\frac{8}{3}(-\frac{3}{2}x+1) = \frac{11}{4}, x = \underline{\hspace{1cm}}.$$

Equation with Multiple Unknown Numbers

7 Solve the equation: $|x + y + 6| + (x - y)^2 = 0$, x + 3y =_____.

2 Solve the equation: $|x - 2y + 3| + (x + y)^2 = 0$, 2x + 3y =_____.

Solve the equation $\begin{cases}
a-1=b+1 \\
a+1=3(b-1)
\end{cases}$

$$(1) \begin{cases} y = 2x \\ 3x + y = 20 \end{cases}$$

(2)
$$\begin{cases} x + y = 10 \\ x - y = 2 \end{cases}$$

(1)
$$\begin{cases} 2x - y = 7 \\ 2x + y = 17 \end{cases}$$

(2)
$$\begin{cases} x + 2y = 10 \\ x + 3y = 12 \end{cases}$$

6 Solve the equation (1)
$$\begin{cases} 3x - 15y = 0 \\ 3x + 2y = 17 \end{cases}$$

(2)
$$\begin{cases} 2x + 5y = 17 \\ 2x - 3y = 9 \end{cases}$$

$$(1) \begin{cases} y - 2x = 2 \\ 3x - y = 1 \end{cases}$$

(2)
$$\begin{cases} y + 3 = 2x \\ 3x + y = 12 \end{cases}$$

Solve the equation (1)
$$\begin{cases} x + y = 100 \\ x - y = 24 \end{cases}$$

(2)
$$\begin{cases} x + 2y = 10 \\ x - 2y = 2 \end{cases}$$

(1)
$$\begin{cases} 9x + 11y = 100 \\ 7x + 11y = 90 \end{cases}$$

$$(2) \begin{cases} 19x - 5y = 301 \\ 11x - 5y = 149 \end{cases}$$

Solve the equation (1)
$$\begin{cases} x = y - 50 \\ x + y = 190 \end{cases}$$

(2)
$$\begin{cases} x + 3y = 7 \\ y - x = 1 \end{cases}$$

(1)
$$\begin{cases} x + y = 17 \\ 2x - y = 10 \end{cases}$$

(2)
$$\begin{cases} 5x + 3y = 13 \\ 2x - 3y = 1 \end{cases}$$

Solve the equation
(1)
$$\begin{cases} x + 3y = 7 \\ 7x - 3y = 1 \end{cases}$$

(2)
$$\begin{cases} 3x + 2y = 28 \\ 8x - 2y = 38 \end{cases}$$

$$(1) \begin{cases} x = 2y \\ x + 3y = 15 \end{cases}$$

(2)
$$\begin{cases} y = x + 7 \\ x + y = 27 \end{cases}$$

Solve the equation
$$(1) \begin{cases} 3x + 5y = 21 \\ 3x + 6y = 24 \end{cases}$$

(2)
$$\begin{cases} 2x - y = 12 \\ x - y = 2 \end{cases}$$

$$(1) \begin{cases} x + y = 9 \\ x - y = 1 \end{cases}$$

(2)
$$\begin{cases} x + 2y = 9 \\ 2y - x = 7 \end{cases}$$

Solve the equation
$$(1) \begin{cases} 4x + 2y = 12 \\ 3x - 2y = 2 \end{cases}$$

(2)
$$\begin{cases} 4x + 2y = 12 \\ 4x - 3y = 2 \end{cases}$$

(1)
$$\begin{cases} 2x + y = 13 \\ 4x - 3y = 11 \end{cases}$$

(2)
$$\begin{cases} 3x - 2y = 30 \\ 5x - 4y = 48 \end{cases}$$

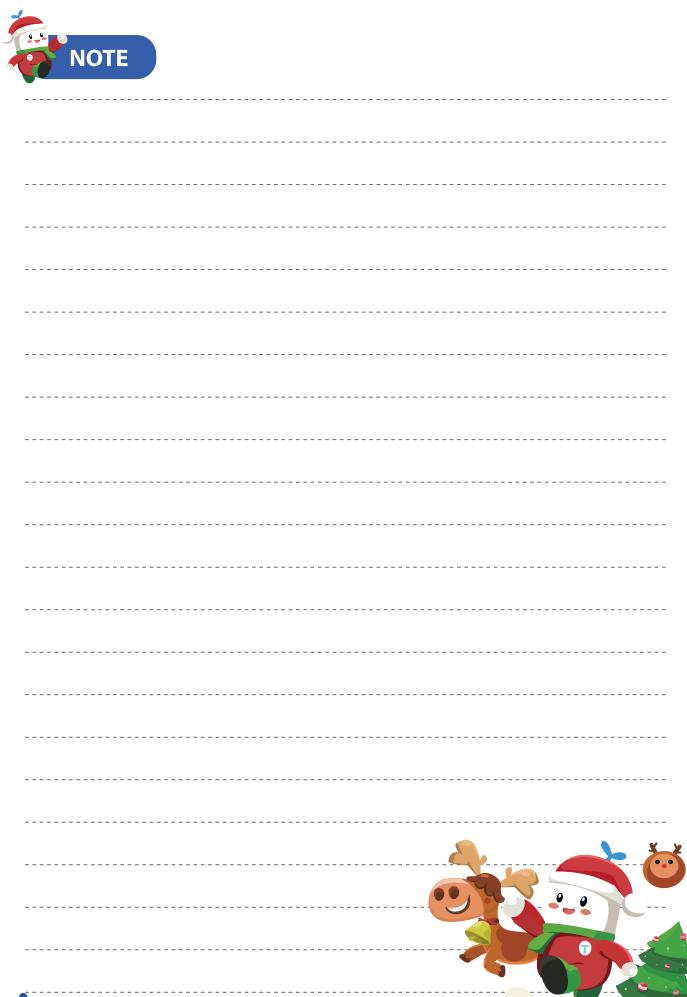
$$(1) \begin{cases} x - y = 5 \\ x + y = 13 \end{cases}$$

Solve the equation
$$(1) \begin{cases} x - y = 5 \\ x + y = 13 \end{cases}$$

$$(2) \begin{cases} 3x - 4y = 5 \\ 3x + 4y = 13 \end{cases}$$

(3)
$$\begin{cases} 3x + 2y = 18 \\ 5x + 2y = 26 \end{cases}$$

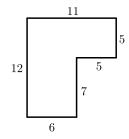
Solve the equation (1)
$$\begin{cases} 5x + 7y = 52 \\ 5x + 2y = 22 \end{cases}$$


(2)
$$\begin{cases} 7x + 5y = 41 \\ 8x + 5y = 44 \end{cases}$$

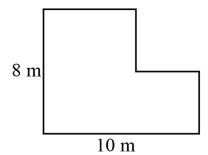
Solve the equation
(1)
$$\begin{cases} x + y = 10 \\ x - y = 2 \end{cases}$$

(2)
$$\begin{cases} 3x + 2y = 15 \\ 3x - 2y = 3 \end{cases}$$

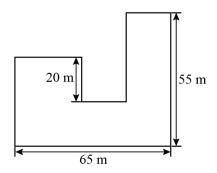
$$(3) \begin{cases} x = 2y \\ x + y = 9 \end{cases}$$

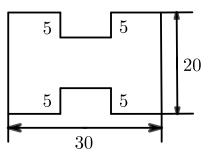


Geometry

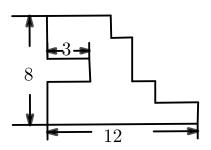


Trick to Find Perimeter

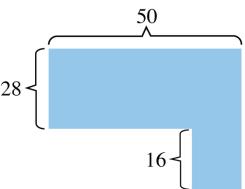

Find the perimeter and the area of the irregular figure below. (Unit: centimeters)

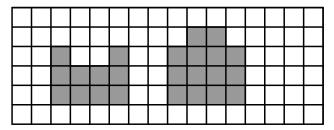

What is the perimeter of the figure below?

3 Find the perimeter of the irregular figure below.

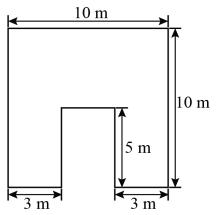


Find the perimeter of the figure below. (Unit: cm)

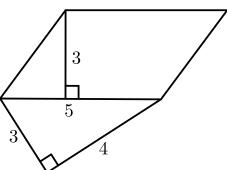



5 Find the perimeter of the figure below. (Unit: cm)

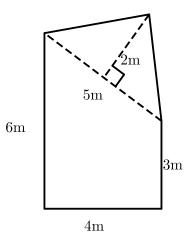
6 Given the lengths of 3 sides of the figure below, the perimeter of the figure is ____ cm. (Unit: cm)



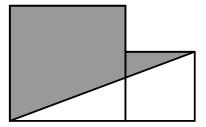
As shown in the figure below, compare the perimeters and areas of the two shaded shapes, respectively. Which one is correct?


- A. Areas are equal, and perimeters are equal.
- B. Areas are equal, and perimeters are NOT equal.
- C. Areas are NOT equal, and perimeters are equal.
- D. Areas are NOT equal, and perimeters are NOT equal.

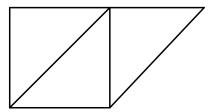
8 Find the perimeter and the area of the irregular figure below.



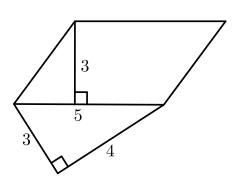
The figure below consists of a right triangle and a parallelogram. The area of the whole figure is _____.

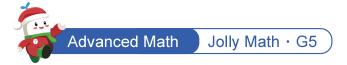


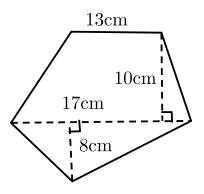
The figure below consists of a triangle and a right trapezoid. The area of the whole figure is ____ m².



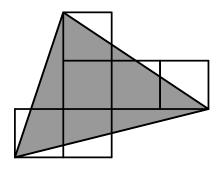
11 As shown below, the side length of the large square is 9 cm, and that of the small square is 5 cm. The area of the shaded part is ____ cm².


The perimeter of the square in the picture is 36 cm, so what is the area of the parallelogram below?

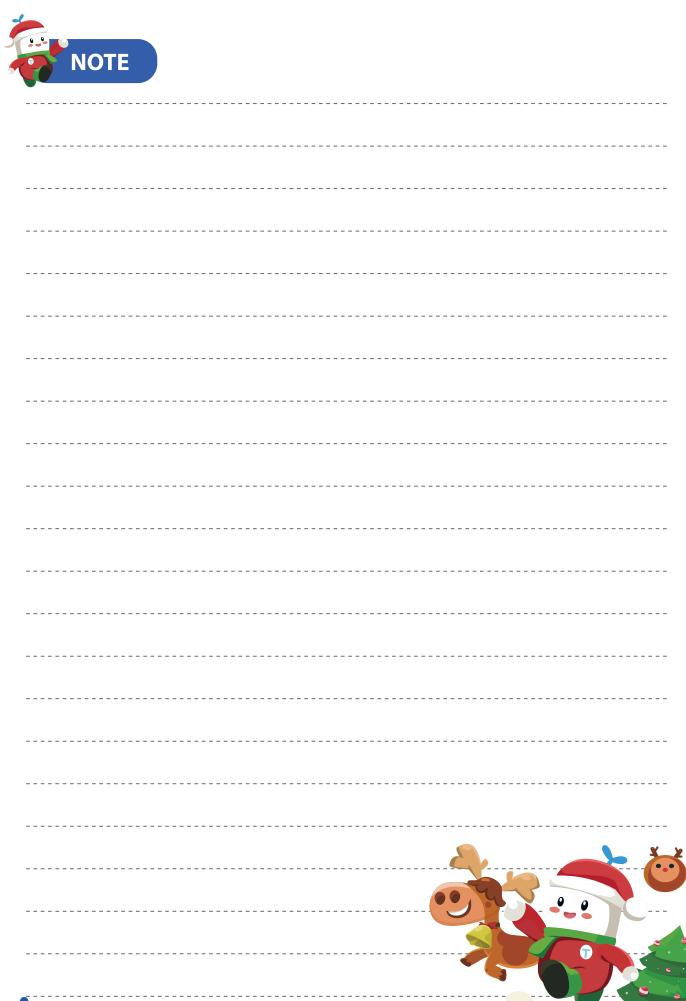



(3) Expanding the base of a parallelogram by 3 times without changing its height, the area will become _____ times larger than before.

The area of the figure below is _____.



15 Calculate the area of the figure below.



 ${\color{red} {\it 16}}$ The side length of each small square is 2, so the area of the shaded triangle is $___$.

Complex Word Problems

1 A photocopier can finish copying a document at speed of 50 pages per minute. Speed up the rate of the photocopier by 20 more pages per minute, he will finish the job in 2 less minutes. How many pages are there in the document?

2 A teacher is marking the papers of the whole class. She plans to finish the work in 5 hours. After working for one hour, she finds that if she wants to finish the work as planned, she needs to mark 6 more papers per hour. But if she can mark 10 more papers per hour, she can even finish marking all the paper 1 hours earlier. How many papers does she need to mark in total?

 \bigcirc A long distance calling plan charges 80 cents for any call up to 15 minutes long and 5 cents for each additional minute. If it costs Ryan a total of 1.4 dollars, how many minutes does the call last?

A company supplies electricity to residents. Each month's bill is computed as follows:

All customers pay a monthly customer fee of 1.8 dollars, plus a fee of 0.15 dollars per kilowatt hour (kWhr) for the first 300 kWhr supplied in the month, plus a fee of 0.20 dollars per kWhr for all usage over 300 kWhr. Given that Sophia's monthly bill is 62.8 dollars, find her electricity usage for the month.

5 Cindy is going to a state fair. The admission fee for the state fair is 5 dollars, and the ride ticket is sold for 2 dollars each. How many rides can Cindy take if she only has 20 dollars?

A car rental company offers a car for 24 dollars per day plus 30 cents per mile for miles up to 200 miles and 25 cents per mile for miles over 200 miles. Arthur rents a car for a day. The bill for his renting is 104 dollars. How many miles does he drive the car for?

Kate is ordering cupcakes online for the party tonight. The Bakery prices cupcakes according to the number of capcakes ordered. For orders of 20 or fewer cupcakes, the price is 4.50 dollars per cupcake plus 12 dollars shipping and handling on the order. For orders of more than 20 cupcakes, the additional cupcakes over 20 will recieve a 20% discount. Given that Kate's bill is 120 dollars, how many cupcakes does she order?

Tim is Tom's older brother. Tim's age is three times that of Tom. 24 years later, Tim's age will be 16 less than twice that of Tom. Tim is _____ years old and Tom is _____ years old.

Mr. White spent 105 dollars on a total of 8 books, and the books are either novels or comic books. The price of a novel is 15 dollars and the price of a comic book is 12 dollars. How many comic books did he buy?

Teresa is riding a bike from *A* to *B*. She decides to arrive at *B* in 12 hours. After riding for one hour, Teresa finds that if she wants to arrive in time as decided, she needs to ride 4 more kilometers per hour; but if she can ride 8 more kilometers per hour, she can even arrive at *B* 2 hours earlier. What is the distance between *A* and *B*?

Diana is producing a batch of of scarfs. She plans to finish the task in 6 days. But if she can produce 24 more scarfs per day, she can finish the job 2 days earlier. How many scarfs does she need to produce?

12 It usually takes Charles 15 minutes to walk to school. Today, he walks 15 more meters per minute than usual and it takes him 3 minutes less. What is the distance from his home to school?

13 In the college parking lot, each employer is allotted 40 free hours of parking per week. After that, they pay 5 dollars per hour up to 50 hours, 8 dollars per hour from 50 hours to 60 hours, and 15 hours for each hour after that. An employer received a parking bill of 82 dollars for the week. How many hours did he park his car in the parking lot?

Students in the reading club are divided into several discussion groups. Each group has either 8 students or 4 students. All together there are 72 students and 14 groups. How many groups are there having 8 students?

Anna can finish reading a book in 15 days. If she wants to finish reading the book 3 days earlier, she needs to read 12 more pages on average each day. How many pages does the book have?

Roy is paid 1.4 times his normal hourly rate for each hour he works over 30 hours in a week. His normal hourly rate is 11.8 dollars. Given that he earned 436.6 dollars last week, how many hours did he work?

Laura is fencing a rectangular field. She plans to finish the task in 6 hours. But if she can fence 4.5 more meters per hour than expected, she can fininsh it 1.5 hours earlier. What is the perimeter of the rectangular field?

There is a total of fifty six-wheel trucks and eight-wheel trucks in the parking lot. Grace counts and finds out there are 340 wheels in total. How many six-wheel trucks and eight-wheel trucks are there, respectively?

Jennifer and Amy went shopping. Jennifer had 4 dollars more than twice as much money as Amy had. After Jennifer spent 3 dollars and Amy spent 10 dollars, the amount of money that Jennifer had was 1 dollar more than four times that Amy had. Originally, Jennifer had _____ dollars and Amy had _____ dollars.

Joe is mowing a lawn. He plans to finish the job in 8 hours. But with a new mower, he can mow 45 feet² of lawns in an hour more than planned. Given that he finishs the job 3 hours earlier than planned, find the area of the lawn.

Rose want to buy some fruit with a certian amount of money. If she spends all the money buying oranges, she can buy 3 kilograms. If she spends all the money buying bananas which is 1.5 dollars per kilogram cheaper than oganges, she can buy 1.8 kilograms more. How much money does she has?

A certain country taxes the first 20000 dollars of an individual's annual income at a rate of 15%, and all income over 20000 dollars is taxed at 20%. If an individual is taxed 7000 dollars, how much is her/his income?

23 Ar	n television	salesperson	receives	a base	salary of	2500	dollars	per
m	onth plus a	commission.	The comm	nission is	32% of th	e sale	s up to	and
ine	cluding 2500	00 dollars for	the mont	h and 59	% of the	sales	over 25	000
do	llars for the	month. A sal	esperson's	salary f	or July is	3300 d	lollars. ŀ	How
m	uch is his/he	er sale for July	/?					

Dani went to a stationery store to buy pens and pencils. A pen is 5 dollars and a pencil is 2 dollars. Dani spent 120 dollars for 30 pens and pencils, then she bought _____ pens and _____ pencils.

It takes a boat 11 hours to travel downstream from Port A to Port B and B hours to travel upstream from Port B to Port A. The speed of the current is B km/h. Assume the speed of the boat in still water and the speed of the current are unchanged. Find the distance between Port B and Port B.

A car rental company charges a flat fee of 30 dollars to rent a car. In addition to that you have to pay a daily fee. If you keep the car for 5 days or less, it costs 25 dollars per day. If you keep the car longer than 5 days, it costs 20 dollars for each additional day. Given that Steven paid 275 dollars for renting a car, how long could he keep the car? (Hint: If a car is rented for 6 days, the bill you need to pay is $30 + 5 \times 25 + (6 - 5) \times 20 = 175$ dollars.)

Sophia is walking from her home to the school. She decides to arrive at the school in 20 minutes. After walking for 5 minutes, Sophia finds that if she wants to arrive at school in time as decided, she needs to walk 5 more meters per minute; but if she can walk 18 more meters per minute. she can even arrive at the school 3 minutes earlier. What is the distance between her home and the school?

Some chicken and rabbits are in one cage. Alice counts and finds out there are 72 feet and the number of chicken and rabbits are the same. There are _____ rabbits in this cage.

A. 10

B. 11

C. 12

D. 13

Laura is producing a batch of gloves. She plans to finish the task in 8 hours. But if she can produce 4 more pairs of gloves per hour, she can finish it 2 hours earlier. How many pairs of gloves does she need to produce?

An laptop salesman receives a base salary of 1800 dollars per month plus a commission. The commission is 2.5% of the sales up to and including 20000 for the month and 4% of the sales over 20000 dollars for the month. If a salesman's monthly salary is 2620 dollars, how much is his sales?

31 Lisa has some pocket money and she wants to buy something to drink. She can buy 10 glasses of orange juice with that money. But if she buys lemonade which is 0.8 dollars cheaper per glass, she can buy 4 more glasses. How much money does she have?

A small pipe can pump 200 gallons of water per hour. A large pipe can pump 120 more gallons of waters in an hour than a small one does. In order to fill in a tank with water, it takes 1.5 more hours to use a small pipe than to use a large pipe. What is the volume of the tank?

A car rental company charges a service fee of 55 dollars to rent a car. In addition to that you have to pay a daily fee. If you keep the car for 7 days or less, it costs 35 dollars per day. If you keep the car longer than 7 days, it costs 30 dollars for each additional day. Given that Elena paid 480 dollars for renting a car, how long could she keep the car?

An car salesperson receives a base salary of 2450 dollars per month plus a commission. The commission is 0.5% of the sales up to and including 240000 for the month and 0.7% of the sales over 240000 dollars for the month. A salesperson the salary for a certain month is 4490 dollars. How much is his sales for the month?

A taxi charges 2.5 dollars for any drive up to 1.8 km long and 1.2 dollars for each additional kilometer. If it cost Ryan a total of 8.5 dollars for a taxi drive, how long is the taxi drive?

A store sells umbrella. On sunny days the store can sell 15 umbrellas a day. On rainy days the store can sell 20 umbrellas a day. Last week, the store sold a total of 120 umbrellas. How many days of last week are sunny?

There are two kinds of bottles, A and B. Bottle A can hold 10 kilograms of water and bottle B can hold 20 kg of water. A total of 900 kilograms of water were filled in 50 bottles. There are _____ bottle A and _____ bottle B.

Lucy can finish reading a fairy tale book in 17 days. If she wants to finish reading the book 4 days earlier, she needs to read 8 more pages on average each day. How many pages does the book have?

Alan and Phillip start at the same time and walk from A to B. It takes Phillip 12 minutes to arrive B. Phillip walks 15 meters more than Alan does. Given that Phillip arrives at B 3 minites earlier than Alan does, find the distance between A and B.

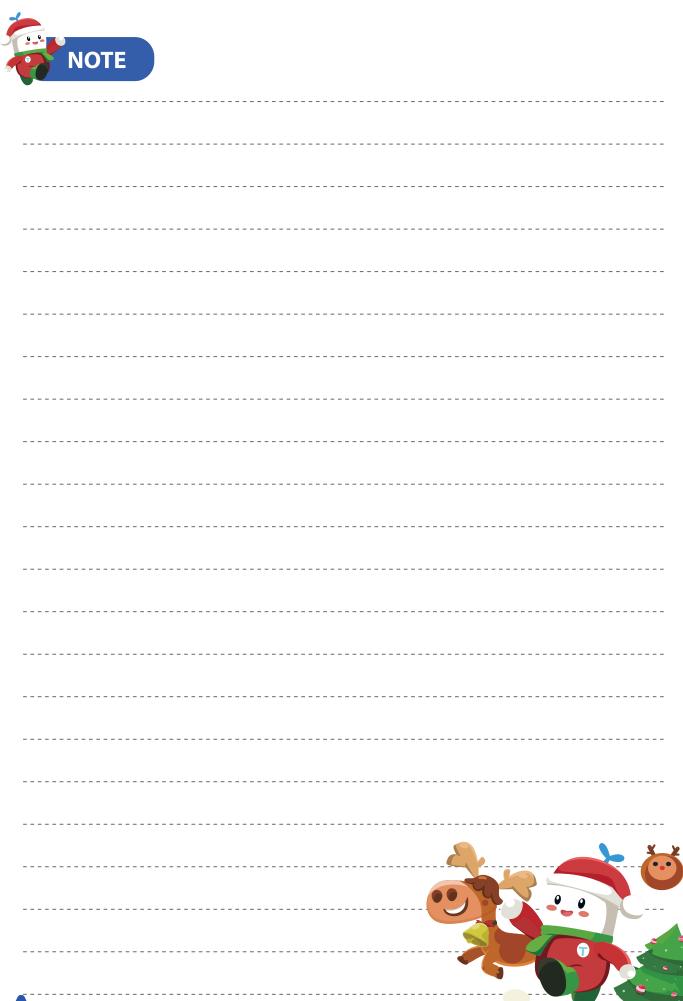
A cinema sold a total of 40 tickets for ticket A and B, which worth 1600 dollars in total. Given that the unit price of ticket A is 30 dollars and the unit price of ticket B is 50 dollars. How many tickets A and tickets B did the cinema sell, respectively?

Sam is producing an order of hats. He decides to finish the work in 8 hours. After working for one hour, Sam finds that if he wants to achieve the goal, he needs to make 8 more hats per hour; but if he can make 29 more hats per hour, he can even finish the work 3 hours earlier. How many hats does he need to make in total?

Peter is taking a math exam. There are three parts in the exam: multiple choices, 'fill in the blank', and short answers. The duration of the exam is 90 minutes, and Peter has already spent 23 minutes in the multiple choices questions and 35 minutes on the 'fill in the blank' questions. What's the possible time he can spend on the last section (short answers) if he wants to finish the exam on time?

A certain county has a tax code, where 10% tax rate is paid on all income up to the first 10000 dollars, a 15% tax rate is paid for any income over 10000 dollars and up to 25000 dollars, and a tax rate of 25% is paid on all income over 25000 dollars. Given that Mr. Smith was taxed 4500 dollars last month, find his annual income last month.

It takes Andrea 3 hours to drive from A to B. If he can drive 15 miles per hour faster, he can save half an hour. What is the distance between A and B?



- 45 The standards of the phone bills in city A are:
 - (1) The phone bill is 30 cents per minute within 3 minutes (including 3 minutes).

(2) When the call time exceeds 3 minutes, the excess part will be charged for \$1.1 per minute.

If James has \$9.7 in his account, how long can James make a phone call with his friends at most?

Number Theory

7 Find the prime factorizations of the following numbers.

Find the prime factorizations of the following numbers.

$$(3) 75 = \underline{\hspace{1cm}}$$

- 6 Find the prime factorizations of the following numbers.
 - (1) 30= ____

(2) 56= ____

(3) 84= _____

Find the prime factorizations of the following numbers.

$$(3) 75 = \underline{\hspace{1cm}}$$

n Find the prime factorizations of the following numbers.

13 Find the prime factorizations of the following numbers.

(1) 24= ____

(2) 252= ____

(3) 231= _____

- 76 Find the prime factorizations of the following numbers.
 - (1) 525= _____

(2) 414= _____

(3) 264= _____

19 Find the prime factorizations of the following numbers.

(1) 44= _____

(2) 105= ____

(3) 64= _____

(4) 45= _____

Find the prime factorizations of the following numbers.

(1) 34= ____

(2) 18= ____

(3) 9= ____

(4) 56= ____

Find the prime factorizations of the following numbers.

(1) 40= ____

(2) 52= ____

(3) 90= ____

(4) 96= ____

25 Find the prime factorizations of the following numbers.

Find the prime factorizations of the following numbers.

37 Find the prime factorizations of the following numbers.

$$(3) 360 = \underline{\hspace{1cm}}$$

Find the prime factorizations of the following numbers.

35 The product of two prime numbers is 65. These two numbers are _____ and ____ .

36	he product of three consecutive even numbers is 480. The sum o	f these
	hree numbers is	

The product of three consecutive numbers is 39270. The sum of these three numbers is _____ .

The product of four consecutive numbers is 3024. The sum of these four numbers is _____ .

39	The product of three consecutive numbers is 120. These three natural numbers are,, and, respectively.
40	The product of four consecutive numbers is 3024 . The largest one of the four numbers is
41)	The product of two natural numbers is 2020. The minimum sum of these two numbers is

The product of four consecutive numbers is 360. These four numbers are _____, ____, and _____.

How many 0s are there by the end of the result of $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times \cdots \times 25$?

A. 4 B. 5 C. 6 D. 7

There are three natural numbers whose sum is equal to their product.

These three numbers are _____, ____, and _____.

Permutation and Combination

1	There are	three balls,	red, blu	e, and pin	ık. Amy	wants	to take	two	of them.
	There are	ways	for Am	/ to take t	he balls	3 .			

2	There a	are 4	different	cups	on	the	desk.	Tina	wants	to	take	3	of	them
	There are ways for Tina to choose.													

3 There are 4 pens, a black one, a brown one, a white one, and a pink one on the desk. John wants to take two of them. There are _____ ways for John to choose.

There are 3 different toys. In how many different ways can they form a line?

A. 5

B. 6

C. 7

D. 8

5 There is a purple pen, a red pen, a pink pen, a black pen, a brown pen, and a yellow pen in a pencilbox. Tina wants to take 2 of them at the same time. There are ____ ways for Tina to take the pens.

6 There is a magazine, a biography, a dictionary, a historical novel, a detective novel, and a romantic novel in a bookshelf. Bob wants to take 3 of them at the same time. There are _____ ways for Bob to take the books.

7	There is a magazine, a biography, a dictionary, a textbook, a historical
	novel, a romantic novel, and a detective novel in the bookshelf. Tom
	wants to take 4 of them at the same time. There are ways for Tom
	to take the books.

8 There are 4	students, Bob, Ar	my, Black, and Lis	a, lining up to tal	ke photos.			
In how many different ways can they form the line?							
Δ 21	B 22	C 23	D 24				

There is a purple pen, a red pen, a pink pen, a black pen, a brown pen, and a yellow pen in a pencilbox. Tina wants to take 3 of them at the same time. There are _____ ways for Tina to take the pens.

10		-	a librarian to lend udent gets only on	eight different books e book.
	A. 1200	B. 1440	C. 960	D. 1680
1		· · · · · · · · · · · · · · · · · · ·		12 different fruits to 5
	girls, given that e	each girl gets only on B. 95040	one truit. C. 9600	D. 7240
	71. 10040	D. 73040	3. 9000	D. 7240
12	There are	different ways to	choose 4 students	from a group of 6 to

participate in the competition.

		sen g menu ee
B	There are go to library.	different ways to choose 6 students from a group of 8 to
14	There are6 to join a party.	different ways to choose three students from a group of

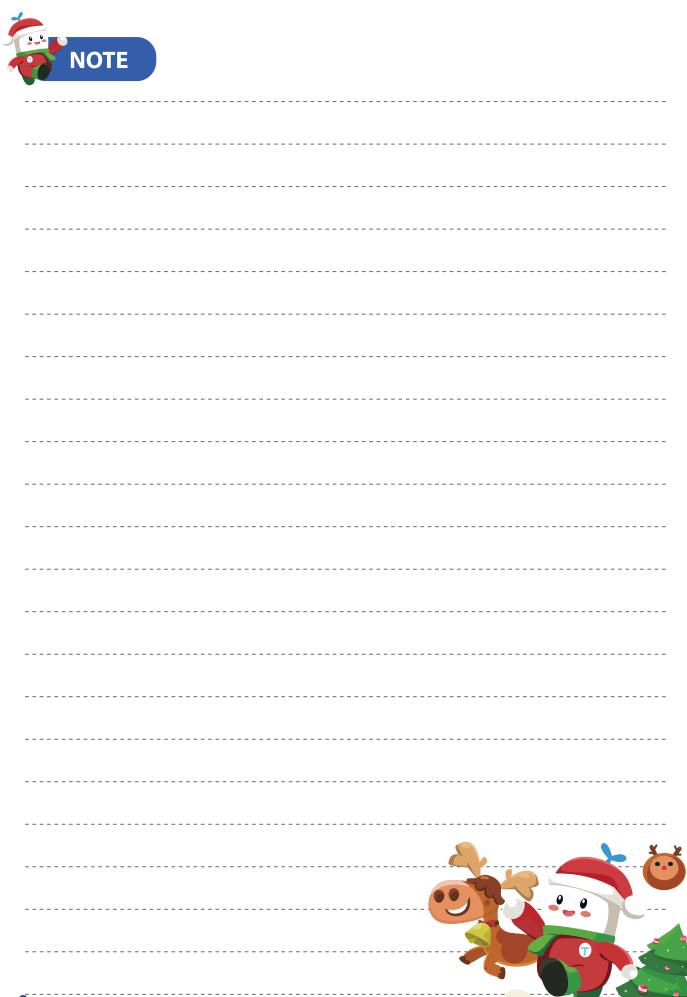
Eight students: Bob, Mogo, Mike, Tim, John, Yoyo, Cindy, and Ella take part in a long distance race. The fastest three students will be awarded different prizes. There are _____ results of getting prizes.

16	A dog toy, a	a cat toy, a ra	bbit toy,	a mor	nkey to	оу, а с	leer toy	, and a	a sheep
	toy are sold	I in the store.	Mike wa	nts to	take 2	of the	em at t	he san	ne time.
	There are _	different	ways.						

Five students wa	nt to take a photo together. Answer the questions.
(1) There are	ways for them to line up.

(2) Their teacher wants to take a photo with them. The student ask the teacher to stand in the middle. There are ____ ways for them to line up.

There are ____ ways to make a three-digit number using six digits 2, 4, 6, 8, 9, and 1. (The digits can be used more than once.)


19	There are ways to make a three-digit number without repeating digits using seven digits $1,2,3,4,5,6,$ and $7.$
20	There are ways to make a three-digit number without repeating digits using seven digits $0,\ 1,\ 3,\ 5,\ 7,\ 8,\ $ and $9.$
a	Answer the questions. (1) There are ways to make a four-digit number without repeating digits using seven numbers 1, 2, 4, 5, 6, 7, and 8.
	(2) There are ways to make a four-digit number without repeating digits using seven numbers 0, 2, 4, 5, 6, 7, and 8.

(3) There are	ways to make a four-digit even number w	vithout
repeating digits usir	ng seven numbers 1, 2, 4, 5, 6, 7, and 8.	

(4) There are _____ ways to make a four-digit odd number without repeating digits using seven numbers 1, 2, 4, 5, 6, 7, and 8.

Y

Crazy Math

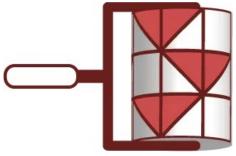
Annie uses the circle to represent a number, and uses the heart to represent another number. Using the two shapes, she makes 3 equations below. Thus,

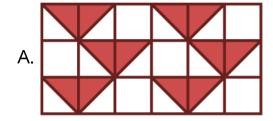
- **A**. 1
- **B**. 2
- D. 4
- E. 5

- What is the simplest form of $\frac{125}{750}$?

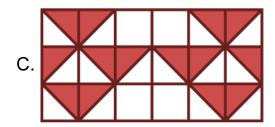
 A. $\frac{25}{150}$ B. $\frac{5}{30}$ C. $\frac{1}{6}$

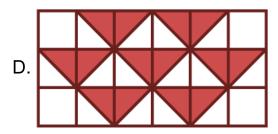
- D. $\frac{2}{6}$

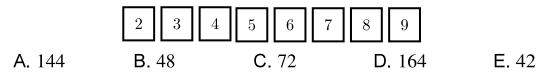

- \bigcirc The construction team can solve 8 missions of the same kind in 3 days. At this rate, how many missions of the same kind will it solve in 9 weeks?
- B. 35
- C. 134
- D. 168
- E. 342


- \square In Jane's school, there are 30 students born in April, and each of them was born in a different day. What is the probability of choosing one student who was exactly born in the first ten days of April?


- C. $\frac{1}{4}$ D. $\frac{1}{15}$ E. $\frac{1}{10}$




Jenry uses the roller as shown below to paint the wall of his room. Which of the following could be the pattern of the wall?



E. None of above is correct.

- 6 How many different three-digit numbers can we make using 6, 7, 8, and 9? The digits can be repeated.
 - **A.** 16
- B. 24
- **C**. 32
- D. 64
- **E.** 72

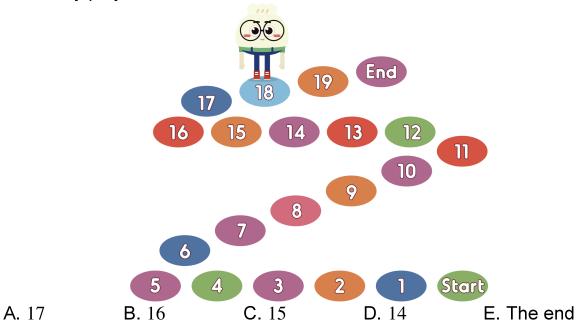
Tito has 8 number cards as shown below, and he gives 3 number cards to Carlisle, 2 number cards to Nancy, and 3 number cards to Bella. Each of them multiplies the numbers on the cards they get. The product Carlisle gets is 90, and the product Nancy gets is 28. What is the product Bella gets? (The number cards cannot be rotated.)

8 Mr Thomas bought $\overline{7}$ apples for his colleagues. He forgets the exact number of apples. But he knows that he can distribute the apples equally to 3 or 4 colleagues without leftover, respectively. What is the number in the \Box ?

A. 1

B. 2

C. 3


D. 4

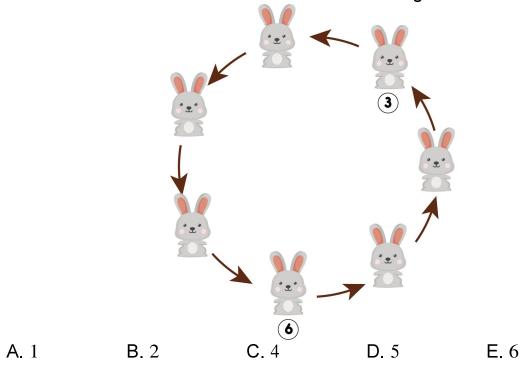
E. 5

Tom and Joe are playing a jumping game as shown in the figure below. They use rock-paper-scissors to determine the winner in each round. In each round, the winner can go 4 steps, while the loser can go 1 step. After they play 7 rounds, Tom arrives at number 19. Where is Joe?

When calculating 63×72 , Judy fails to write the correct column multiplication. She writes one of the four digits as 9 and gets a result which has a difference of 432 from the correct one. Which digit does she write incorrectly?

A. 2

B. 3


C. 6

D. 7

E. It's impossible to determine.

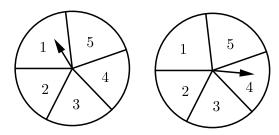
Amy has 7 rabbits which are numbered from 1 to 7, and they sit in a circle in order of 1 to 7. She distributes 113 carrots to them counterclockwise as shown below. Each rabbit will get 1 carrot each time. Amy gives the first carrot to the rabbit numbered 6. Which rabbit will get the last carrot?

The sum of three 2-digit consecutive numbers is the largest 2-digit number. What is their product?

A. 99

B. 25900

C. 35904


D. 34589

E. 39804

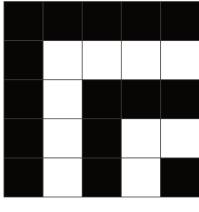
13 The two spinners shown are each spun once and each lands on one of the numbered sectors. The area of each sector is the same for both spinners. What is the probability that the numbers in the two sectors are equal?

- A. $\frac{9}{25}$ B. $\frac{2}{5}$

among these 11 numbers to be as small as possible, then this largest prime number is _____ .

- **A**. 17
- **B**. 13
- **C**. 11
- D. 5
- E. 7

A. 6400


B. 1280

C. 7200

D. 6600

E. 3600

Some small squares are shaded in the picture as shown below. The big square has dimensions of 5×5 and is made up of both shaded and white small squares in a certain pattern. Find the difference between the number of shaded squares and white squares in a 12×12 square according to this pattern.

A. 9

B. 10

C. 11

D. 12

E. 13

7 The volume of a cuboid is 512. What is the least sum of the length of all its edges?

A. 36

B. 64

C. 80

D. 96

E. 108

Jam has some pieces of candy. He wants to share with some kids. If he shares the candy among 8 kids equally, there will be 2 pieces left. If he shares the candy among 9 kids equally, there will be 3 pieces left. If he shares the candy among 10 kids equally, there will be 4 pieces left. How many pieces of candy are there?

A. 321

B. 354

C. 720

D. 360

E. 240

19 If x : y = 3 : 7 and z : x = 2 : 13, what is (x + z) : (y + x)?

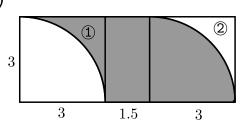
A. 5:20

B. 1:4

C.9:26

D. 41:32

E. 32:41



- Joe writes an expression $\frac{5}{9} \times \frac{9}{13} \times \frac{13}{17}$ ··· Following the pattern, he writes the expression with $\frac{45}{49}$ as the multiplier in the middle. What is the result of the expression?

- A. $\frac{5}{49}$ B. $\frac{5}{89}$ C. $\frac{5}{17}$ D. $\frac{1}{31}$ E. $\frac{5}{81}$

- she gets is even?
 - A. $\frac{33}{49}$ B. $\frac{1}{2}$ C. $\frac{1}{49}$ D. $\frac{1}{8}$ E. $\frac{1}{16}$

22 What is the area of the shaded parts? $(\pi \approx 3)$

- A. 3π B. $\frac{9}{4}\pi$ C. 4.5π
- D. 13.5
- **E**. 18

If a natural number can be written as the sum of both two and three consecutive natural numbers, then we can call it a Think Number. What is the largest Think Number no larger than 5789?

A. 5786

B. 5787

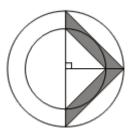
C. 5788

D. 5789

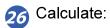
E. 5784

Allen, Tom, and Zoe are planning to buy gifts for each other. They plan to buy gifts using dollars. The number of dollars can only be an integer. The ratio of Allen's budget to Tom's budget is 11:9. The ratio of Tom's budget to Zoe's budget is 3:4. If Zoe plans to spend 120 dollars on the gift. How many dollars will Allen spend on the gift?

A. 90


B. 144

C. 110

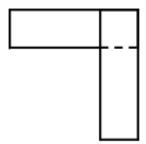

D. 120

25 The area of the shaded part is 50. What is the area of the whole ring? ($\pi \approx 3.14$)

- **A**. 100
- B. 150
- C. 157
- D. 175
- E. 200

$$1 + 3 + 5 + 7 + \dots + 99 =$$
_____.

Given that November 11, 2020 is Wednesday, what day is November 11, 2021?



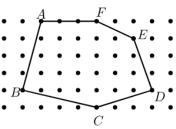
28	A total of 2	27 chic	kens a	nd ra	abbi	its are ca	iged	d toge	eth	er. The nui	mber c	of legs
	of rabbits	is the	same	as	the	number	of	legs	of	chickens.	Thus,	there
	are	rabbit	s in the	cag	e.							

The teacher divides some balls among 5 students, and the number of balls owned by these students are five consecutive natural numbers. There are 160 balls in total. How many balls does the student with the most balls have?

Two rectangular pieces of paper each has a length of 6 cm and a width of 2 cm. These two pieces are put together to form the shape shown below, and the perimeter of the figure is _____ cm.

Calculate:

$$99.9 - 99.8 + 99.7 - 99.6 + 99.5 - 99.4 + \dots + 0.3 - 0.2 + 0.1 =$$


If you need to visit 2 countries in different continents among 4 African countries, 5 Asian countries and 6 American countries, you can make _____ different choices.

A train with a length of 100 meters passes through the Thinking Bridge with a length of 2000 meters. The train runs 300 meters per minute. It will take the train _____ minutes to pass the bridge completely.

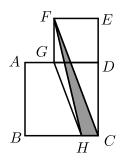
A book has a total of 240 pages. On the first day, Cici read $\frac{1}{3}$ of this book. On the second day, she read $\frac{1}{4}$ of the rest of the book. On the third day, she finished reading this book. She read _____ pages on the third day.

On the grids below, the distance between each two adjacent dots is 1. The area enclosed by the polygon below is _____ .

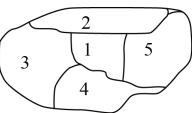
Given the sum of three different non-zero natural numbers is 39, their smallest possible product is _____ .

Calculate:

$$\left(1 - \frac{1}{2}\right) \times \left(2 - \frac{2}{3}\right) \times \left(3 - \frac{3}{4}\right) \times \left(4 - \frac{4}{5}\right) \times \dots \times \left(8 - \frac{8}{9}\right) = \underline{\qquad}.$$

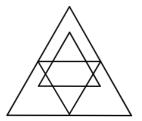

If the decimal point of a certain decimal is moved one place to the left, the sum of the new decimal and the original decimal is 4.07. Then the original decimal is _____.

39 Jim is distributing notebooks to his classmates. If each classmate gets 4 notebooks, there will be a lack of 18 notebooks; if each classmate gets 2 notebooks, there will be a surplus of 28 notebooks. Thus, there are _____ notebooks in total.

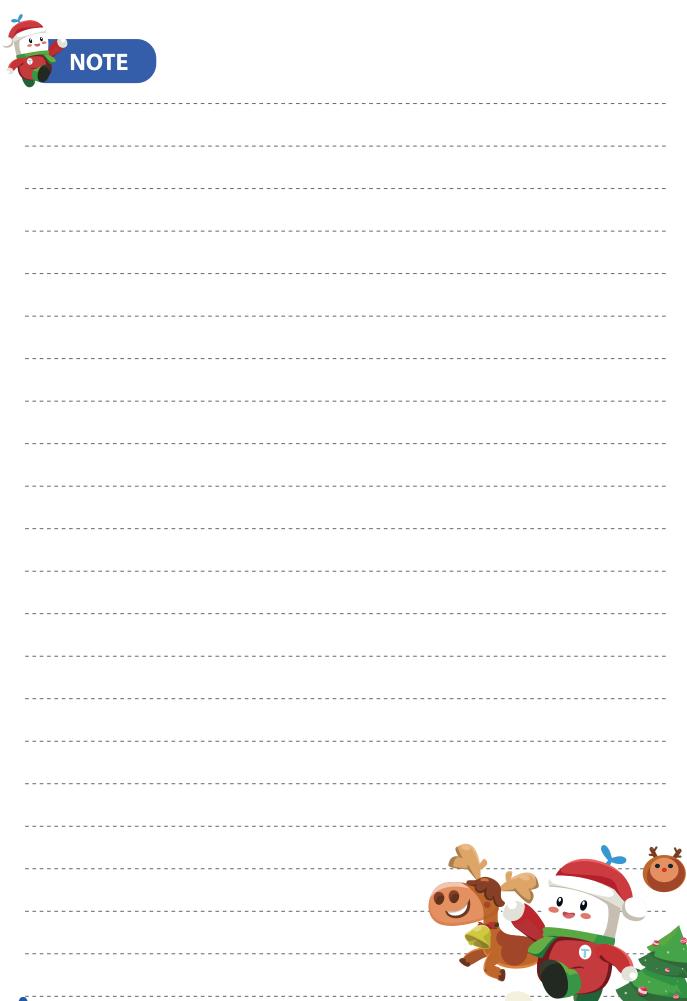

As shown in the figure below, quadrilateral ABCD and quadrilateral DEFG are squares with side lengths of 5 cm and 3 cm, respectively. GH//CF. The area of $\triangle CFH$ is ____ cm².

is the smallest four-digit number that is divisible by 35.

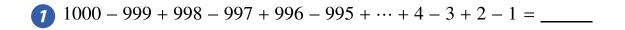
🕖 Use 4 colors to paint each part of the figure. If colors in adjacent parts cannot be the same and a part can only be painted one single color, how many ways are there to paint the figure?



357 students in the fourth grade of Watermelon Primary School and each student denoted either money or stationery, or both. 235 students donated money and 248 students donated stationery for the children in the earthquake-stricken area. The number of students donated both money and stationery is _____.



44 There are _____ triangles in the figure below.


- There are 5 foxes in the forest. A fox who tells lies has 4 tails, and a fox who tells the truth has 3 tails.
 - A: We have a total of 17 tails.
 - B: We have a total of 18 tails.
 - C: We have a total of 19 tails.
 - D: We have a total of 20 tails.
 - E: Only one of them is right.
 - These 5 foxes have a total of _____ tails.

2 Calculate:

$$\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{234}\right) \times \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{234} + \frac{1}{235}\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{234} + \frac{1}{235}\right) \times \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{234}\right) = \underline{\qquad}.$$

3 Calculate:

$$0.1 + 0.2 + 0.3 + \dots + 0.9 + 0.10 + 0.11 + 0.12 + \dots + 0.98 + 0.99 =$$

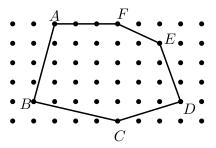
Calculate:

$$5015 \times 5016 - 5014 \times 5017 =$$

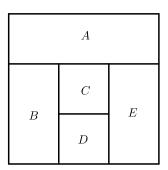
5 Calculate and write the result as a mixed number.

$$2013 \times \frac{2011}{2012} = \underline{\hspace{1cm}}$$

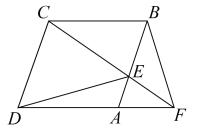
 \bigcirc Find the sum of the digits for the result of 99999×7083 .


There is a decimal with two decimal places. If we delete the decimal point of it, the new number is 47.52 greater than the original decimal. Then the original decimal is _____.

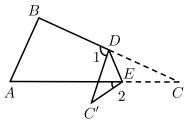
8 Calculate 1997 × 1995 – 1996 × 1994 = _____



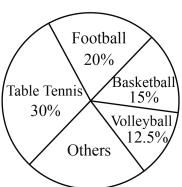
The side length of each grid is 1 as shown. Find the area of the figure below.



Use 4 colors to paint the blocks: A, B, C, D and E (each block can only be one color). If adjacent blocks cannot be of the same color, how many coloring options are there?



As shown in the figure below, in parallelogram ABCD, line CF intersects with line AB at E, line CF intersects with the extension of line DA at F. $S_{\triangle DAE} = 18 \text{ cm}^2$. The area of $\triangle BEF$ is _____ cm^2.



Fold a piece of triangle paper along DE as shown below. $\angle A = 65^{\circ}$, and $\angle B = 75^{\circ}$. If $\angle 2 = 35^{\circ}$, then $\angle 1 = \underline{}$

The pie chart below shows the favorite sports of students in Think Academy. Given 80 students like football the most, _____ students like other sports (other than football, basketball, table tennis, and volleyball) the most in Think Academy.

There are altogether 27 squirrels living in three trees. First, 2 squirrels move from Tree A to Tree B. Then, 3 squirrels move from Tree B to Tree C. Lastly, 4 squirrels move from Tree C to Tree A. The three trees now end up with the same amount of squirrels. How many squirrels were living in Tree A at the beginning?

Justin is distributing apples to his students. If each student gets 7 apples, three of the students will get nothing; if each student gets 4 apples, there will be a surplus of 15 apples. Thus, there are _____ apples in total.

Think One on One

There is a two-shelf bookshelf. Irene finds 11 novels and 10 comic books on the upper shelf, and 8 novels and 6 comic books on the lower shelf. All books are different. Now, Irene takes two books including one novel and one comic book, one from the upper shelf, the other from the lower shelf at the same time. There are in total _____ different choices for Irene to choose from.

Peter is at point A and Irene is at point B, and they traveled toward each other and departed at the same time. They were 600 m away from point A when they met for the first time. Then, they continued to move forward and returned immediately after reaching A or B. During the return trips, they met again when they were 100 m away from point B. The distance between point A and point B is _____ m.

300 students are attending a competition which contains long-distance running and swimming. 130 boys and 70 girls are competing for longdistance running. 150 boys and 80 girls are competing for swimming. 100 boys attend both races. There are _____ girls who are only competing for swimming.

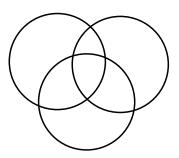
Professor Buqing Su is a famous mathematician in China. Once he met a famous German mathematician on the train. The German mathematician asked an interesting question to Professor Su: "Two people (A and B) travel from two places (100 km apart) at the same time and travel toward each other. A walks 4 km every hour and B walks 6 km every hour. A has a dog and the dog runs 7 km every hour. The dog departs with A and runs toward B, and it turns back toward A once it meets B, and it turns back toward B once it meets A ... The dog stops running when A and B meet with each other. How long does the dog travel in total?"

Think One on One

Four little monkeys have some peaches. The number of peaches that the first monkey has is $\frac{1}{2}$ of the total number of peaches that the other three have. The number of peaches that the second monkey has is $\frac{1}{3}$ of the total number of peaches that the other three have. The number of peaches that the third monkey has is $\frac{1}{4}$ of the total number of peaches that the other three have. The fourth monkey has 26 peaches. How many peaches do the four monkeys have in total?

is the largest three-digit number that is divisible by 36.

Form a number by randomly selecting four digits from 7, 0, 5, 4, and 9. The largest integer formed that is divisible by 2, 3, and 5 is ______.


Among the natural numbers from 1 to 600 (inclusive), there are _____ numbers that can be divisible by neither 3 nor 4.

Given the sum of three different non-zero natural numbers is 38, their largest possible product is _____.

As shown below, the three circles form a figure which has 7 parts. Fill numbers $1 \sim 7$ in the 7 parts below (each number can only be used once) to make the sum of four numbers in each circle be the same. What is the greatest value of the sum?

Use 5 colors to paint each part of the figure. If colors in adjacent parts cannot be the same, how many ways of painting are there?

28 Seven students are talking about the day of the week:

The first student says today is Wednesday;

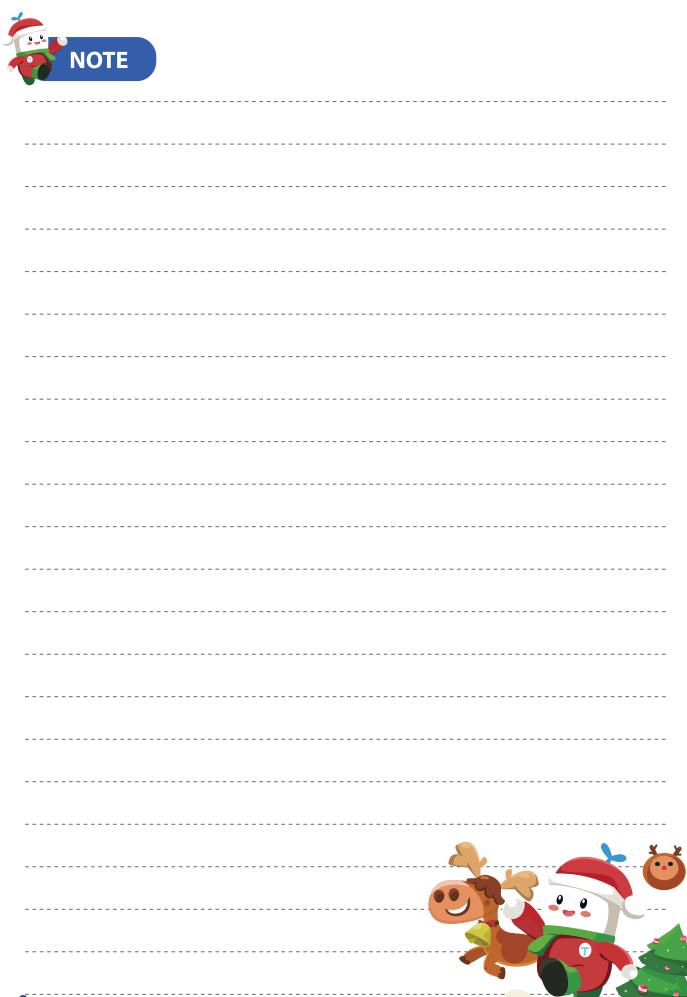
the second says the day after tomorrow is Wednesday;

the third says tomorrow is Wednesday;

the fourth says that today is not Monday, Tuesday and Wednesday;

the fifth says yesterday was Thursday;

the sixth says yesterday was not Saturday;


the last person says tomorrow is Thursday.

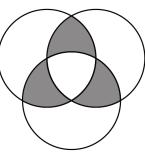
It's known that only one of the seven student is right. Then what day is it today?

•

Think Cup

7 Vivian creates a new operation: $m@n = m \times m - n \times n$. What is the value of 11@9?

A. 99


B. 121

C. 81

D. 40

E. 30

2 As shown below, three identical circles overlap with each other. The three shaded parts have the same area of 50, and the middle white part has an (approximately) area of 70. Given that the total area covered by the figure is 610, what is the radius of each circle? ($\pi \approx 3$)

A. 9

B. 10

C. 12

D. 18

 \bigcirc How many 0s are there in the end of the result of the factorial of 25?

A. 2

B. 4

C. 5

D. 6

E. 8

Jimmy wants to color all the dots below. If each two adjacent dots (connected by a line segment) cannot be in the same color, at least how many colors of paint does Jimmy need to prepare?

A. 1

B. 2

C. 3

D. 4

5 There is a number X. Three times the sum of 4 and number X is 36. What is the value of number X?

A. 2

B. 4

C. 6

D. 8

E. 10

Ben the bartender designs a new type of juice, which is made by mixing two different types of beverages. The first beverage has a sugar concentration of 20%. The second beverage has a sugar concentration of 10%. Ben pours 2 L of the first type and 3 L of the second type, and then mixes them together. What is the sugar concentration of the juice now?

A. 12%

B. 14%

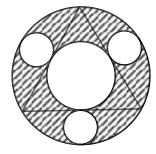
C. 15%

D. 16%

E. 18%

Bob constructs a rectangular building by many $1 \times 1 \times 1$ cubes. The volume of the rectangular building is 210. What is the least sum of all edges of the rectangular building?

A. 18


B. 80

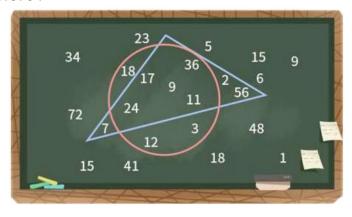
C. 72

D. 210

E. 116

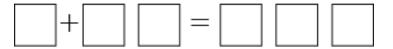
Peter the designer designs a garden as shown below, which is formed by many circles mutually tangent to each other and an equilateral triangle inside. He decides to plant roses in the shaded part, and lavenders in the white part. The total area of the garden is 32. What is the area of the rose part?

A. 10


B. 12

C. 14

D. 16



② Teacher Ivy writes lots of numbers on the blackboard. She uses a blue triangle and a pink circle to frame some numbers. How many numbers inside the triangle but outside the circle that can be divided by 7 without remainder are there?

- **A**. 1
- **B**. 2
- **C**. 3
- D. 4
- E. 5

Choose six different digits among 0 to 9 to fill in each of the following six squares. What is the largest three-digit number we can get as the result?

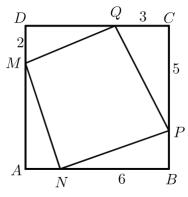
- A. 104
- B. 105
- C. 106
- D. 107
- E. 108

- Definite @ as the operation of choosing the larger number between two numbers. Definite & as the operation of choosing the smaller number between two numbers. Find the result of $(37\&23) \times (25@45) \div (23@15)$.
 - A. 23
- B. 25
- C. 45
- D. 225
- E. 100

- What is the result of $1 \div 1 \frac{2}{2001} \div 1 \frac{2}{2003} \cdots \div 1 \frac{2}{2023}$?
 - **A**. 1
- B. $\frac{2025}{2001}$ C. $\frac{2021}{2025}$ D. $\frac{2001}{2025}$ E. $\frac{1}{2001}$

Juliet and Rose are setting off from their own homes toward each other. The distance between their homes is 3000 m. Juliet walks at a speed of 45 m/min, and Rose runs at a speed of 55 m/min. Suppose they keep walking. From now on, after how many minutes can they have a distance of 200 m?

A. 30


B. 29

C. 27

D. 31

E. 32

The area of the rectangle below is 56 cm^2 . The length of each line segment is shown below. What is the area of quadrilateral MNPQ in cm²?

A. 29.5

B. 30

C. 32

D. 32.5

Pandora has an opaque box. The box contains nine cards with numbers 1 -9 on them, respectively. Apollo and Artemis each draws three cards from it at the same time. Apollo looks at his three cards and tells Artemis, "the sum of your three numbers cannot be 15." Which number card must Apollo have drawn?

A. 2

B. 4

C. 5

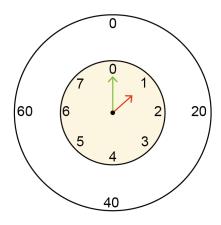
D. 6

E. 8

16 A number is formed by 9 millions, 7 ten thousands, 5 thousands, 8 tens, 2 hundreds and 3 ones. What number is it?

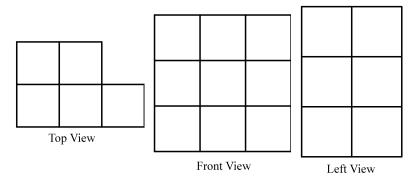
A. 975823

B. 9075823


C. 987532

D. 9075283

17 Irene invents Irene clock, which is different from the common clock in real world. When the hour hand makes a round, one day passes. The inner circle indicates the hours, and the outer circle indicates the minutes of Irene clock. Given that the 1 o'clock on Irene clock corresponds to 12 P.M. on common clock, what is the time on the common clock corresponding to 3:20 on Irene clock?


A. 6:45 P.M.

B. 2:20 P.M. C. 5:45 P.M.

D. 5:15 P.M.

E. 4:25 P.M.

18 How many different ways are there to build a solid figure whose three views are shown below?

A. 21

B. 25

C. 9

D. 12

On 2021 December 31st, Lucas, Jeremy, and Irene visited their grandpa together. Then Lucas visited him every 4 days, Jeremy visited him every 5 days, and Irene visited him every 6 days. In the first three months of 2022, how many days could the grandpa be visited by at least one person?

A. 42

B. 52

C. 45

D. 46

E. 56

Vivian has many barbie cards. If she puts 8 cards in each group, there will be 5 cards left. If she puts 9 cards in each group, there will be 3 cards left. If she puts 10 cards in each group, there will be 1 card left. How many cards at least should Vivian take away, so that the remaining number of cards can be divisible by 8, 9, and 10?

A. 36

B. 15

C. 23

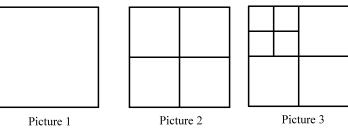
D. 21

E. 9

- **21** What is the result of $\frac{1}{3} \div 1\frac{2}{3} \times \frac{5}{7} \div 1\frac{2}{7} \cdots \times \frac{2021}{2023} \div 1\frac{2}{2023}$?
 - **A**. 1
- B. 2023 C. $\frac{1}{2025}$ D. $\frac{1}{2023}$ E. $\frac{1}{2021}$

There are 20 balls of the same size in a box.

Lucas says: " $\frac{1}{2}$ of them are red."


Peter says: "The probability of drawing a green ball without observing them is $\frac{1}{5}$."

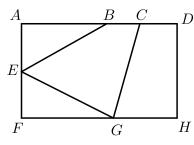
Claire says: "There are three colors of balls in the box: red, light blue, and green."

How many dark blue balls are there in the box?

- A. 0
- B. 4
- C. 5
- D. 6
- E. 10

Peter keeps dividing the whole square into many small squares as shown below. Then, he paints only one of the smallest squares black in each picture. In which picture the black part will take $\frac{1}{8^8}$ of the whole square?

A. 9


B. 10

C. 11

D. 12

E. 13

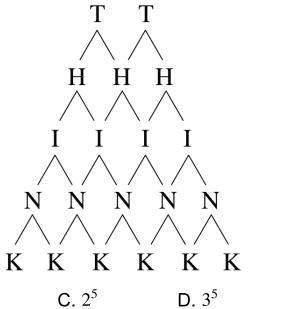
The picture below is the map of the public garden. Each line segment represents a road in the garden. Bobbie the designer chooses point *B* as the entrance. If he wants to walk along all the roads without repeating, which point should be set as the exit?

A. C

B. *A*

C.H

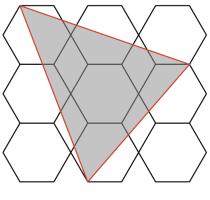
D.G


 $\mathsf{E}.\,E$

- Elvis is packing shirts for a trip. He just randomly grabs 3 shirts from his closet without observing them. The closet contains 10 shirts: 5 striped, 3 plaid, and 2 pure-colored ones. What is the probability that he chooses 2 striped shirts and 1 pure-colored shirt?
- B. $\frac{1}{3}$
- C. $\frac{1}{12}$
- D. $\frac{1}{6}$ E. $\frac{1}{4}$

- 🔀 In Bill's class, every student can play either piano, or violin, or both. 24 of his classmates can play piano, and the number of students that can play violin is half of that of playing piano. If there are 4 students who can play both, how many students are there in the class?
 - A. 68
- B. 20
- C. 38
- D. 34
- E. 32

 \bigcirc Starting from letter T, how many ways are there to go through the five letters of "THINK" in order? (You can only go along the line segments.)



A. 2^4

B. 3⁴

E. 4^3

28 The area of each small regular hexagon is 6. What is the area of the shaded triangle?

A. 20

B. 22

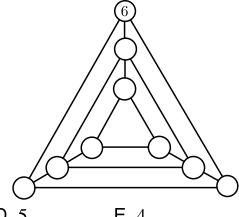
C. 24

D. 26

E. 28

Solve the equation: 30 - 9x = 28 - 5x.

- A. x = 1
- B. x = 0.5 C. x = 2
- D. x = 1.5 E. x = 1.6


30 What is the total area of the shaded parts?

- A. 30
- B. 40.5
- C. 50.5
- D. 45
- E. 45.5

3 Fill in $1 \sim 9$ in the $9 \bigcirc s$ so that the sum of numbers on each of the 3 lines and each of the 3 triangles are the same. Given the position of 6, how many different ways to fill the other 8 numbers? (The figure cannot be rotated or flipped.)

A. 8

B. 7

C. 6

D. 5

E. 4

Some pirates found lots of gold coins. They divided all the coins equally into 5 groups. Then, the leader of each group would divide the coins he got with his teammates. The 5 groups had 4, 8, 9, 10, and 11 pirates, respectively. In addition, all the leaders found that after they divided the coins evenly, there were always 2 coins left. Which of the following could be the possible range where the number of coins of each group was in? A. 4150 ~ 4160 B. 3950 ~ 3960 C. 4500 ~ 4600 D. 7920 ~ 7960

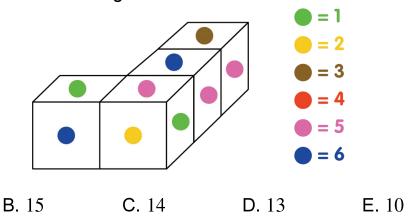
E. 7970 ~ 7980

There is a cuboid with a dimension of $3 \times 4 \times 5$. Now paint all the surfaces red and cut it into many $1 \times 1 \times 1$ cubes. How many cubes that have two faces painted red are there?

A. 24

B. 6

C. 8


D. 11

E. 22

A. 18

James places four identical cubes to form a figure below. There are 6 dots of different colors on the 6 faces, and each color represents a number as shown on the right. What is the sum of four numbers represented by the colors at the bottom of the figure?

After a test, teacher Valeria collects the data of the scores. Given that:

The average score of class A is 76.

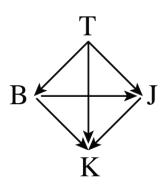
The average score of class B is 84.

The average score of class C is 89.

The average score of class A and B is 79.

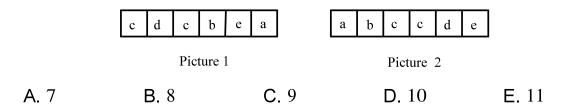
The average score of all the three classes is 81.

There are 40 students in class A. What is the ratio of number of students of class B to that of C?


- A. 3:2
- B. 1:1
- C. 4:1
- D.5:2
- E. 2:3

- What is the product of five fractions, whose denominators are 5-1 in descending order, and the numerators are 1-5 in ascending order?
 - A. $\frac{1}{25}$
- B. $\frac{1}{2}$
- C. $\frac{1}{5}$
- D. 0
- **E**. 1

There are four kids Tom, Jim, Ken, and Bob. The arrows in the figure below show the relationship of their ages. For example, T→J means Tom is younger than Jim. Which of the following is correct if arranging their ages from oldest to youngest?



- A. Jim, Ken, Tom, Bob
- C. Ken, Jim, Bob, Tom
- E. Tom, Jim, Bob, Ken

- B. Ken, Bob, Tom, Jim
- D. Tom, Bob, Jim, Ken

Sana plays a game with the letter cards below. Each time she can only exchange the positions of two adjacent letter cards. How many times of operations at least are needed to change picture 1 into picture 2?

39 Which expression has the same result as

$$1 + 2 + 3 + 4 + 2 + 4 + 6 + 8 + 3 + 6 + 9 + 12 + 4 + 8 + 12 + 16?$$
A. $(1 + 2 + 3 + 4) \times 6$
B. $(1 + 2 + 3 + 4)^2$
C. $(16 + 1) \times 16 \div 2$
D. $1 \times 1 + 2 \times 2 + 3 \times 2 + 4 \times 3 + 6 + 8 \times 2 + 12 \times 2 + 16$

Lucy joined a math test which had the scoring rules below: for any correct answer, she got 5 points; for any skipped or wrong answer, she lost 7 points. There were 20 problems in total. When she finished the test, she got only 4 points. How many problems did she answer correct?

A. 4

B. 8

C. 12

D. 16

E. 3

47) What are the last two digits of the result of $1 \times 3 \times 5 \times 7 \times \cdots \times 101$?

A. 05

B. 25

C. 50

D. 55

E. 75

 $\overline{392AB}$ is a multiple of 45, and $\overline{B34}$ is a three-digit even number. What is the sum of A and B?

A. 13

B. 4

C. 5

D. 7

E. 4 or 13

On the first day of a 7-day holiday, Judy reads 9 pages of a book. On the second day, she reads 12. Then each day later, she reads 3 pages more than the day before. On the last day of the holiday, she reads the corresponding number of pages and exactly finishes reading the book. How many pages does the book have?

A. 27

B. 30

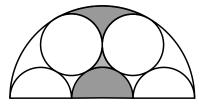
C. 120

D. 126

E. 128

Think Math League has the rule below: each team should join 30 games, and get 3 points for each win, 1 point for each tie, 0 points for each loss. In this season, Joan's team wins the champion by getting a total of 77 points. If the number of games they lose is less than the number of ties, how many games do they win during the season?

A. 25

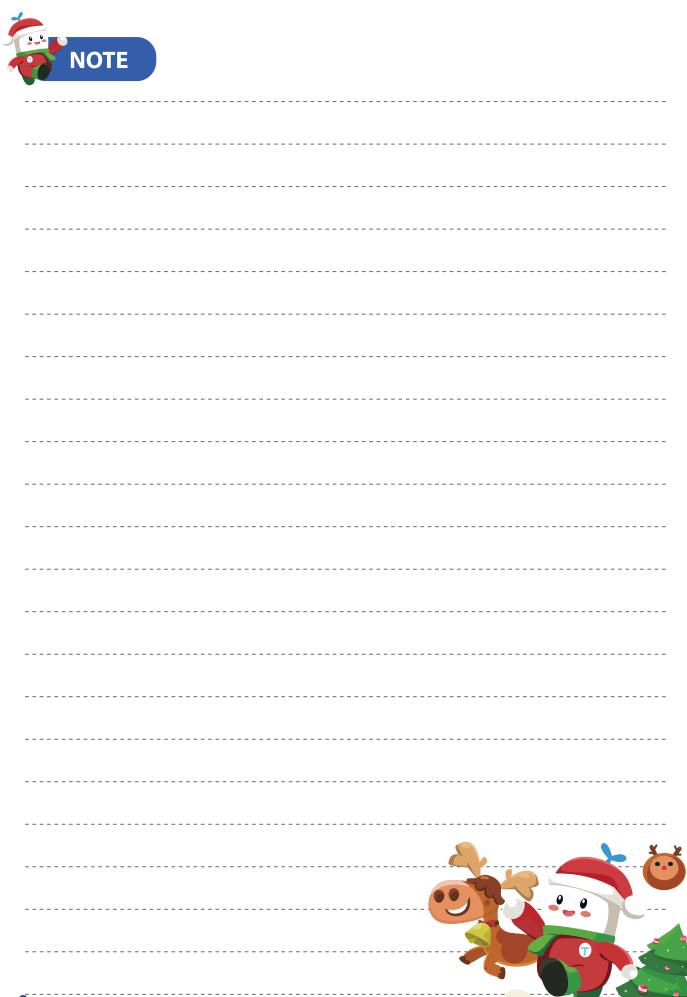

B. 24

C. 23

D. 22

E. 21

As shown below, each two adjacent circles or semicircles are tangent to each other. Given that the radii of the two small circles and the three semicircles are 6, what is the total area of shaded parts?


A. 30π

B. 36π

 $C.48\pi$

D. 60π

E. 66π

Think Academy US Online

https://www.thethinkacademy.com/

G5 [B1] Mixed Operation

Decimals

1:three

2:10

3:four

4:0.1

2 B

3 1:99.9

2:329

3:100.1

4:88900

Alternative:88,900

1:57.93

2:120

3:128.6

4:67300

5 1:68.3

2:190

3:966.9

4:17900

- **6** 1:0.003
 - 2:0.002
 - 3:0.003
 - 4:0.006
- **7** (1) 20.03
 - (2) 10.4
 - (3) **5.3**8
 - (4) 24.29
- 8 1:5.2
 - 2:18.1
 - 3:**16.8**
 - 4:38.55
- 9 (1) 11.2
 - (2) 11.6

Fractions & Decimals

- **1** A
- 2 (1) 0.96
 - (2) 0.675
 - (3) 1.25
 - (4) 1.4
- $(1) \frac{3}{4}$

- (2) $2\frac{63}{100}$ (3) $7\frac{13}{20}$ (4) $1\frac{19}{50}$

- 4 1:0.4
 - 2:0.375
 - 3:**1.25**
 - 4:21.9
 - 5:**2.32**
 - 6:9.875
- **5** A
- 6 1:0.875
 - 2:1.4
 - 3:7.75
 - 4:17.125
 - 5:**3.52**
 - 6:9.34
- 8 1:2.6

2:1.75

3:1.375

9 1:0.68

2:2.375

3:0.275

1:0.36

2:2.25

3:**2.125**

Roots

1 (1) 4

(2) 5

(3) **3**

(4) 7

2 (1) 9

(2) 11

(3) **13**

(4) 8

3 (1) **2**

(2) **2**

(3) 9

(4) 3

- **4** (1) **2**

 - (2) **3**
 - (3) **2**
 - (4) -2
- $(1) 6\sqrt{2}$
 - (2) $4\sqrt{3}$
 - (3) $3\sqrt{5}$
 - (4) $6\sqrt{3}$
- - (2) $4\sqrt{2}$
 - (3) 8
 - (4) $3\sqrt{3}$
- 7 (1) 9
 - (2) 1
 - (3) 12
 - (4) 4
- **8** (1) **10**
 - (2) **2**
 - (3) 17
 - (4) 4
- 9 (1) $5\sqrt{3}$
 - (2) $4\sqrt{5}$
 - (3) $5\sqrt{6}$

- (4) 5
- 10 (1) $5\sqrt{2}$
 - (2) $\sqrt{2}$
 - (3) $4\sqrt{3}$
 - (4) $2\sqrt{3}$

Negative Numbers

- 1 (1) 3
 - (2) **-2**
- (1) -6
 - (2) 18
- 3 (1) -9
 - (2) 9
 - (3) 9
- **4** (1) −**1**
 - (2) -11
 - (3) -18
 - (4) 1
- 5 (1) -16
 - (2) **0**
 - (3) 16
 - (4) 0

6 (1) -6

- (2) **6**
- (3) -31
- (4) 102
- (1) -1
 - (2) -1
 - (3) **−7**
 - (4) -7
 - (5) -1
- **8** (1) 100
 - (2) -38
 - (3) -70
 - (4) **11**
- 9 (1) -3
 - (2) -18
 - (3) 1
 - (4) 1
- 10 (1) 96
 - (2) **-9**
 - (3) $-\frac{1}{2}$ (4) $\frac{75}{2}$
- (1) -102
 - (2) -423

- (3) -19
- (4) **64**
- (5) -35
- (6) -168
- 12 (1) 24
 - (2) -120
 - (3) **16**

Exponents

- (1) 961
 - (2) **1024**
 - (3) 1936
 - (4) 2025
- 2 (1) 8
 - (2) 9
- 3 (1) 9
 - (2) 9
 - (3) -9
- 4 1:216
 - 2:25
 - 3:8
 - 4:9

- 5 (1) 32

 - (2) **28**
 - (3) 44
 - (4) -36
- 6 (1) **-1**= ____
 - (2) **-1**
 - (3) -1
 - (4) 1
- 7 1:961
 - 2:1444
 - 3:1936
 - 4:2025
 - 5:3844
 - 6:7744
 - 7:121
 - 8:12321
 - 9:1234321
 - 10:123454321
- 8 (1) 0
 - (2) -12
- 9 (1) 24
 - (2) 17
 - (3) **21**
 - **(4) 12**

- 10 (1) 8

 - (2) 16
 - (3) **32**
 - (4) **64**
 - (5) **128**
 - (6) **256**
 - (7) 512
 - (8) 1024
- (1) 5
 - (2) 5
 - (3) **5**
 - (4) 5
- 12 (1) 17
 - (2) **23**
 - (3) -31
 - (4) -31
- 13 (1) 9
 - (2) -44
 - (3) **33**
 - (4) -1024
- 14 (1) 9
 - (2) 7
 - (3) **−7**
 - (4) -9

- **15** (1) **121**
 - (2) 144
 - (3) 169
 - (4) 196
 - (5) **225**
 - (6) **256**
 - (7) **289**
 - (8) **324**
 - (9) **361**
 - (10) 441
 - (11) 484
 - (12) **529**
 - (13) 576
 - (14) 625

16 (1) 8

- (2) -8
- (3) -8
- (4) -5×2^{101}

- (1) 81
 - (2) -81

 - $(3) -\frac{27}{8}$ $(4) -\frac{27}{2}$

G5 [B2] Equation

Basic Equation

$$2 \quad x = 22$$

(2)
$$x = 54$$

(3)
$$x = 75$$

(2)
$$x = 990$$

(1)
$$x = 89$$

(2)
$$x = 207$$

(3)
$$x = 45$$

6 (1)
$$x = 42$$

(2)
$$x = 77$$

(1)
$$x = 246$$

(2)
$$x = 11$$

- (3) **55**
- (4) 11
- $9 \quad (1) \quad x = 12$
 - (2) x = 448
- 10 (1) x = 7
 - (2) x = 990
 - (3) x = 48
- 12 x = 4
- $13 \quad x = 35$
- $14 \ x = 21$
- 15 x = 62
- 16 x = 1
- x = 6
- x = 3
- 19 (1) x = 2

- (2) x = 24
- (1) x = 30
 - (2) x = 0
 - (3) x = 8
- (1) x = 26
 - (2) a = 1
 - (3) x = 60
- (1) x = 7776
 - (2) x = 7
- (1) x = 2
 - (2) x = 2
- (1) x = 3
 - (2) x = 21
 - (3) x = 8
- (1) x = 9
 - (2) x = 9
- (1) x = 7
 - (2) x = 40
- 27 (1) 24
 - (2) **3**

- (1) x = 14
 - (2) x = 100
- (1) y = 134
 - (2) m = 8
- (1) a = 8
 - (2) x = 15
- (1) x = 2
 - (2) x = 3
- (1) x = 8
 - (2) x = 2
- 33 (1) x = 15
 - (2) x = 1200
 - (3) x = 30
- (1) x = 200
 - (2) x = 384
 - (3) x = 29
- (1) x = 12
 - (2) x = 1
 - (3) x = 2

- (1) x = 3
 - (2) x = 5
 - (3) x = 60
 - (4) x = 13
- (1) x = 9
 - (2) x = 2
 - (3) x = 12
 - (4) x = 10
- (1) x = 0.5
 - (2) x = 1
 - (3) x = 6
 - (4) x = 5
 - (5) x = 20
- 39 1:–14
 - 2:3
 - 3:**6**
 - 4:15
- 40 1:21

 - 2:81
 - **3:5**
 - 4:36
- 41 1:0.7

 - 2:-8

- 42 1:-4
 - 2:7
 - 3:-11
 - 4:1
- 43 1:1.5
 - 2:5
- 44 1:4
 - 2:**-12**
 - 3:-7
 - 4:99
- 45 1:**22**
 - 2:**42**
 - 3:6
 - 4:56
- 46 **1:2**
 - 2:**2**
 - 3:**-6**
 - 4:-7
- 47 1:**-2**
 - 2:4
 - 3:**-3**
 - 4:0.25
 - Alternative: $\frac{1}{4}$

Fractional Equation

- 1:-3
 - 2:33
 - 3:-7
 - 4:3
- $\begin{array}{c|c}
 2 & 1: \frac{1}{11} \\
 2: -22
 \end{array}$
- $\begin{array}{c}
 3 & 1: \frac{10}{11} \\
 2: \frac{13}{36}
 \end{array}$
- 1: $\frac{1}{3}$ 2:-10
- $\begin{array}{c}
 5 & 1: \frac{5}{6} \\
 2: \frac{4}{35}
 \end{array}$
- $\begin{array}{c}
 6 & 1: \frac{9}{2} \\
 2: \frac{20}{11}
 \end{array}$
- $71:\frac{4}{7}$ 2:2
- $81:\frac{29}{13}$

$$2:\frac{40}{23}$$

Equation with Percentage

$$x = 10$$

$$2 x = 40$$

$$3 x = \frac{1}{10}$$

$$4 x = 72$$

$$5 \quad x = \frac{211}{3}$$

$$6 \quad x = 62$$

$$x = 4$$

$$8 x=4$$

$$9 \quad x = 20$$

$$x = 60$$

(1)
$$x = 10$$

(2)
$$x = 14$$

(1)
$$x = 40$$

(2)
$$x = 50$$

(1)
$$x = 0.5$$

(2)
$$x = 1.97$$

$$(1)$$
 $\frac{115}{72}$

(1)
$$x = 150$$

(2)
$$x = 120$$

(1)
$$x = 10$$

(2)
$$x = 19.5$$

(1)
$$x = 3$$

(2)
$$x = 12$$

(3)
$$x = \frac{12}{7}$$

(1)
$$x = \frac{2}{11}$$

(2)
$$x = 10$$

(3)
$$x = 120$$

(1)
$$x = \frac{2}{9}$$

(2) $x = \frac{7}{4}$
(3) $x = \frac{1}{4}$

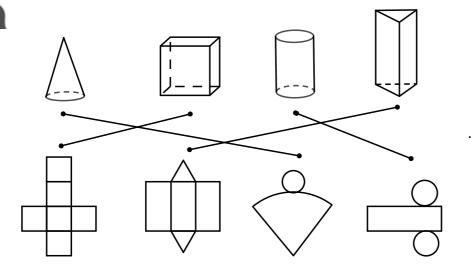
(2)
$$x = \frac{7}{4}$$

$$(3) \quad x = \frac{1}{4}$$

- (1) x = 16
 - (2) x = 100
 - (3) x = 60
 - (4) x = 20

- (1) x = 25
 - (2) x = 10
 - (3) x = 40
 - (4) x = 0.36

G5 [B3] Geometry


Basic Area

- 1 2.4 m
- 2 93.5 cm²
- 3 21
- 4 56.25 m²
- 5 24
- 6 45 cm²
- **7** 6
- 8 144
- $9 (1) 24 \text{ cm}^2$
 - (2) $21 \,\mathrm{m}^2$
- 10 A 11 D
- 12 6 cm

Knowing Cubes and Cuboids

- 2 1:5
 - 2:8
 - 3:**3**
 - 4:0
 - **5:6**
 - 6:**12**
 - 7:5
 - 8:9
- 3 1:2
 - 2:3, 4
- **4** B
- **5** 3

6 1:4

2:6

3:**6**

4:12

5:**3**

6:0

7 2, 4, 5, 7.

8

9

1		Figure 1	Figure 2	Figure 3	Figure 4
	Number of vertices	8	8	4	5
	Number of faces	6	6	4	5
	Number of edges	12	12	6	8

10

Figure	Number of Vertices	Number of Edges	Number of Faces
(1)	4	6	4
(2)	5	8	5
(3)	8	12	6
(4)	6	9	5

1

Number of faces	4	5	6
Shape of the base	triangle	quadrilateral	rectangle
Shape of the	triangle	triangle	rectangle
other faces	anangie	anangie	rectangle

12

1	Figure	Number of Vertices	Number of Faces	Number of Edges
	1	4	4	6
	2	8	6	12
	3	6	8	12
	4	9	8	15

Surface Area and Volume of 3D Figure

(1) 1:5

2:3

3:**2**

(2) 1:rectangle

2:3

3:**2**

4:6

(3) 1:rectangle

2:5

3:**3**

4:bottom face

2 136 cm.

3 216

(1) 3780 cm².

(2) **182** cm².

150 cm², 52 cm².

- **6** (1) 84
 - (2) 216
- 512000
- (1) 60 cm³
 - (2) **24** cm³
 - (3) **27** cm³
- 9 (1) 125 cm³.
 - (2) 192 cm^3 .
- 1:2:3
 - 2:4:9
 - 3:8:27
- (1) The surface area of the solid figure is 52 m^2 . The volume of the solid figure is 24 m^3 .
 - (2) The surface area of the cube is 54 m^2 . The volume of the cube is 27 m^3 .
- 12 64
- 13 The surface area of the cube is 294 m^2 .

The volume of the cube is 343 m^3 .

(1) Volume of the container: 120 m^3 ,

Volume of the liquid inside: 90 m^3 .

(2) Volume of the container: 45 m^3 .

Volume of the liquid inside: 37.8 m^3 .

- 15 20 cm
- 13500 cm^3
- **17** 288 cm³
- 18 D
- 19 153 cm³.
- $20 28 \, \mathrm{cm}^3$
- **21** 8
- (1) 0.6
 - (2) **2.5**

G5 [B4] Word Problems

Knowing Units

- 43.95 m
- 2 77
- 3 56700 grams
- 4 **23300** grams
- 5 41.45 m
- 6 5.23 kilometers

Word Problems with Fractions and Decimals

- 16.8 dollars
- 2 0.36 kilograms
- 3 1440
- 4 12 $\frac{1}{5}$ kilograms

- 5 $2\frac{17}{20}$ dollars
- $6 \frac{1}{8}$ liters
- $713\frac{3}{4}$ pounds
- 8 720 dollars
- 9 1.8 kilograms
- 10 1
- $11 \frac{1}{4}$ kilograms
- 12 7.625 dollars; $7\frac{5}{8}$ dollars
- 13 6.15 kg
- 14 4.875
- 15 B
- 960 dollars
- 17 40.5 m²

- 1.7 kilograms
- 19 5.3 liters
- 20 2.6
- 21 406 kg.
- 22 97.3 tons

Word Problems with Basic Equation

1:x+13

Alternative: 67 - x

2:27

3:40

21:x-5

2:21

3:16

- 3 10 gallons of gas
- 4 90
- 5 1.5 dollars

- 6 He can buy 28 tennis balls.
- **20** spoonfuls of sugar
- 8 45
- 9 5 g
- 20 fortune cookies are needed if there are 10 customers.
- 11 He can spend at most 18 dollars on dinner
- 12 He can buy 10 pieces of chocolate.
- 13 1:x + 17 2:35 3:52
- 14
- 15 7
- 16 g
- 17 She can drive 10 miles in 15 minutes.

20 glasses

- 19 1:4
 - 2:6.4
 - 3:**2.4**
- 20 He can walk 10 meters in 12 seconds
- 21 12 days
- He can drive 10 miles.
- 23 450 minutes
- 24 1:20
 - 2:30
 - 3:50
- 25 1:**3**0
 - 2:40
 - 3:50

G5 [A1] Complex Operation & Equation

Mixed Operation

- **1** (1) **25**
 - (2) -2
 - (3) -4
 - (4) -6

- 2 1:11
 - 2:72
 - 3:12

- 3 1:-16
 - 2:-20

- 4 1:–4

Alternative 1:1 $\frac{5}{8}$

Alternative2:1.625

5 1:2

- 2:125

2:18

7 1:-45

2:3

8 1:10

2:23

3:8

9 1:30

2:0.25

Alternative: $\frac{1}{4}$

10 1:12

2:8

3:**24**

1:-28

2:22

- 12 (1) 9
 - (2) $\frac{49}{50}$
- 13 (1) -17
 - (2) $\frac{9}{1000}$

Exponents

1:4

$$3:\frac{1}{2}$$

$$3:\frac{1}{8} \\ 4:-\frac{1}{999}$$

$$2:\frac{1}{121}$$

$$3:-\frac{1}{2}$$

2 1:81
2:
$$\frac{1}{121}$$
3: $-\frac{1}{2}$
4: $-\frac{1}{9}$

$$\begin{array}{c}
3 & 1: \frac{1}{9} \\
2: -\frac{1}{2} \\
3: -\frac{1}{2}
\end{array}$$

$$2:-\frac{1}{2}$$

$$3:-\frac{1}{2}$$

$$2:\frac{1}{16}$$

$$2:\frac{1}{4}$$

$$2:\frac{1}{4}$$

 $3:-\frac{1}{2}$

Recurring Decimals

- $1:51\frac{17}{33}$
 - 2:17
 - $3:\frac{17}{33}$
- $21:78\frac{26}{33}$
 - 2:78
 - $3:\frac{26}{33}$
- $31:\frac{17}{33}$
 - 2:51
 - $3:51\frac{17}{33}$
- $41:\frac{13}{90}$
 - 2:13
 - $3:\frac{13}{5}$
- $5 1:69\frac{23}{33}$
 - 2:69
 - $3:\frac{23}{33}$
- $61:27\frac{3}{11}$
 - 2:27
 - $3:\frac{3}{11}$

$$\begin{array}{ccc} 10 & (1) & \frac{5}{11} \\ & (2) & 3\frac{71}{111} \\ & (3) & \frac{32}{111} \end{array}$$

$$\begin{array}{ccc} \mathbf{11} & (1) & \frac{9}{11} \\ & (2) & 8\frac{7}{11} \\ & (3) & \frac{16}{27} \end{array}$$

Complex Equation

$$2 x = 4$$

$$3 x = 7$$

$$4 x = 0.8$$

$$5 \quad x = 20$$

6
$$x = 11$$

$$x = 5$$

$$x=5$$

$$9 x = 18$$

$$x = 3.6$$

11
$$x = 7$$

12
$$x = 19$$

13
$$x = 4$$

$$14 x = \frac{1}{6}$$

15
$$x = 17$$

$$16 \quad x = \frac{3}{2}$$

$$x = 110$$

$$x = 1$$

- (1) x = 300
 - $(2) \quad x = \frac{3}{2}$
- (1) x = 132
 - (2) x = 2
- (1) x = 4
 - (2) x = 30
- (1) x = 2
 - (2) x = 102
- (1) x = 2.5
 - (2) x = 3
- (1) x = 20
 - (2) x = 1
- 25 (1) **25**
 - (2) 5
- (1) x = 0
 - (2) x = 7
- (1) x = 26
 - (2) x = 2

(1)
$$x = 4$$

(2)
$$x = 6$$

(1)
$$x = 0$$

(2) x = 2

(3)
$$x = 10$$

(1)
$$x = 6$$

(2) x = 1.5

(3)
$$x = 0$$

(1)
$$x = \frac{11}{8}$$

(2) $x = \frac{7}{2}$

(2)
$$x = \frac{7}{2}$$

(3)
$$x = 4$$

(1)
$$x = 5$$

(2)
$$x = 24$$

(3)
$$x = 191$$

33 1:2

$$1:\frac{7}{4}$$

35
$$1:\frac{7}{4}$$
 $2:-\frac{1}{6}$

- 36 1:1 $2:-\frac{5}{16}$
- 37 1:2 2:1.5
- 38 1:0.5 2:3
- 39 1:3 2:3
- $\begin{array}{c}
 40 & 1: \frac{3}{10} \\
 2: \frac{-36}{19}
 \end{array}$
- 41 1:-2 2:2
- 42 1:1 $2:-\frac{5}{16}$
- 43 1:0.4 2:0.15
- 1:0.28 2:0.875

46
$$1:\frac{10}{7}$$
 $2:-\frac{1}{2}$

$$\begin{array}{c}
47 & 1:-\frac{1}{2} \\
2:\frac{8}{7}
\end{array}$$

$$\begin{array}{c}
48 & 1: \frac{2}{9} \\
2: -\frac{7}{6}
\end{array}$$

$$49 \ 1:-\frac{7}{3} \\ 2:\frac{7}{3}$$

$$\begin{array}{c}
50 \\
1:-\frac{3}{8} \\
2:-220
\end{array}$$

$$\begin{array}{c}
54 & 1: \frac{13}{8} \\
2: -\frac{1}{12}
\end{array}$$

$$\begin{array}{c}
55 & 1:-\frac{9}{10} \\
2:-\frac{7}{17}
\end{array}$$

$$\begin{array}{c}
56 & 1:-\frac{17}{2} \\
2:-\frac{1}{18}
\end{array}$$

$$\begin{array}{c|c}
58 & 1: \frac{1}{5} \\
2:25.8
\end{array}$$

61
$$1:\frac{10}{3}$$
 $2:-2$

62 1:
$$-\frac{15}{17}$$
 2: $-\frac{1}{7}$

63
$$1:\frac{2}{3}$$
 $2:-10$

$$\begin{array}{c}
64 & 1:-\frac{5}{2} \\
2:-\frac{1}{48}
\end{array}$$

Equation with Multiple Unknown Numbers

$$1 -12$$

$$\begin{cases} a = 5 \\ b = 3 \end{cases}$$

$$\begin{array}{ll}
4 & (1) & \begin{cases} x = 4 \\ y = 8 \end{cases} \\
(2) & \begin{cases} x = 6 \\ y = 4 \end{cases}
\end{array}$$

$$\begin{cases} x = 62 \\ y = 38 \end{cases}$$

$$(2) \begin{cases} x = 6 \\ y = 2 \end{cases}$$

$$(2) \begin{cases} x = 6 \\ y = 2 \end{cases}$$

$$(2) \quad \begin{cases} x = 19 \\ y = 12 \end{cases}$$

(1)
$$\begin{cases} x = 70 \\ y = 120 \end{cases}$$
(2)
$$\begin{cases} x = 1 \\ y = 2 \end{cases}$$

$$(2) \quad \begin{cases} x = 1 \\ y = 2 \end{cases}$$

(1)
$$\begin{cases} x = 9 \\ y = 8 \end{cases}$$
(2)
$$\begin{cases} x = 2 \\ y = 1 \end{cases}$$

$$(2) \begin{cases} x = 2 \\ y = 1 \end{cases}$$

(1)
$$\begin{cases} x = 1 \\ y = 2 \end{cases}$$
(2)
$$\begin{cases} x = 6 \\ y = 5 \end{cases}$$

$$(2) \quad \begin{cases} x = 6 \\ y = 5 \end{cases}$$

13 (1)
$$x = 6$$

$$y = 3$$

(2)
$$x = 10$$

$$y = 17$$

(1)
$$\begin{cases} x = 2 \\ y = 3 \end{cases}$$
(2)
$$\begin{cases} x = 10 \\ y = 8 \end{cases}$$

$$(2) \quad \begin{cases} x = 10 \\ y = 8 \end{cases}$$

(1)
$$\begin{cases} x = 5 \\ y = 4 \end{cases}$$
(2)
$$\begin{cases} x = 1 \\ y = 4 \end{cases}$$

$$(2) \quad \begin{cases} x = 1 \\ y = 4 \end{cases}$$

$$\begin{array}{ll}
\mathbf{16} & (1) & \begin{cases} x = 2 \\ y = 2 \end{cases} \\
(2) & \begin{cases} x = 2 \\ y = 2 \end{cases}
\end{cases}$$

$$(2) \quad \begin{cases} x = 2 \\ y = 2 \end{cases}$$

(1)
$$\begin{cases} x = 5 \\ y = 3 \end{cases}$$
(2)
$$\begin{cases} x = 12 \\ y = 3 \end{cases}$$

$$(2) \quad \begin{cases} x = 12 \\ y = 3 \end{cases}$$

18 (1)
$$\begin{cases} x = 9 \\ y = 4 \end{cases}$$
(2)
$$\begin{cases} x = 3 \\ y = 1 \end{cases}$$
(3)
$$\begin{cases} x = 4 \\ y = 3 \end{cases}$$

$$(2) \quad \begin{cases} x = 3 \\ y = 1 \end{cases}$$

$$(3) \quad \begin{cases} x = 4 \\ y = 3 \end{cases}$$

19 (1)
$$\begin{cases} x = 2 \\ y = 6 \end{cases}$$
 (2)
$$\begin{cases} x = 3 \\ y = 4 \end{cases}$$

$$(2) \quad \begin{cases} x = 3 \\ y = 4 \end{cases}$$

(2)
$$\begin{cases} x = 6 \\ y = 4 \end{cases}$$
(2)
$$\begin{cases} x = 3 \\ y = 3 \end{cases}$$
(3)
$$\begin{cases} x = 6 \\ y = 3 \end{cases}$$

$$(2) \quad \begin{cases} x = 3 \\ y = 3 \end{cases}$$

$$(3) \quad \begin{cases} x = 6 \\ y = 3 \end{cases}$$

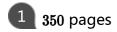
G5 [A2] Geometry

Trick to Find Perimeter

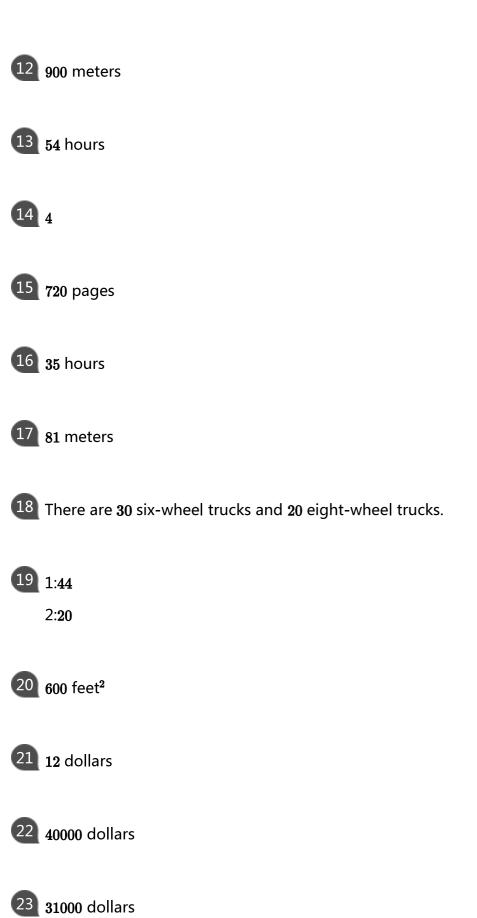
Perimeter: 46 cm;

Area: **97** cm²

- 2 36 m
- 3 280 m
- 4 120 cm
- **5** 46 cm
- 6 188cm
- **7** c
- Perimeter = 50 cm; Area = 80 cm^2 .
- 9 21
- 10 23



- **1** 71
- 12 81 cm²
- 13 3
- 14 21
- 15 218 cm²
- 16 22



G5 [A3] Word Problems

Complex Word Problems

- 2 54
- **3** 27 minutes
- 4 380 kWhr
- Cindy can take at most 7 rides.
- **6 280** miles
- **7** 25
- 8 1:**24** 2:8
- 9 5
- 10 212 km
- **11** 288

1:20

2:10

- 25 412.5 km
- 26 11 days
- 27 1015 m
- 28 C
- 29 96 pairs
- 30 **28000** dollars
- 31 28 dollars
- 800 gallons
- 33 **13** days
- 34 360000 dollars
- 35 6.8 km
- 36 4

- 37 1:10 2:40
- 38 **442** pages
- 900 meters
- 40 20 ticket A and 20 ticket B.
- 41 216
- 42 He can spend at most 32 hours.
- 43 **30000** dollars
- 44 **225** miles
- 45 James can at most make a phone call for 11 minutes.

G5 [A4] Combinatorics

Number Theory

(2)
$$64 = 2^6$$

$$(1) \quad 80 = 2^4 \times 5$$

(2)
$$58 = 2 \times 29$$

$$(1) \quad 36 = 2^2 \times 3^2$$

(2)
$$24 = 2^3 \times 3$$

(3)
$$91 = 7 \times 13$$

$$4 \quad (1) \quad 2 \times 3^2$$

(2)
$$2^4 \times 3$$

$$(3) \quad \mathbf{3} \times \mathbf{5^2}$$

$$5$$
 (1) $33 = 3 \times 11$

(2)
$$60 = 2^2 \times 3 \times 5$$

(3)
$$90 = 2 \times 3^2 \times 5$$

$$(2) \quad \mathbf{2^3} \times \mathbf{7}$$

(3)
$$2^2 \times 3 \times 7$$

- (2) $2^3 \times 3^2$
- $(3) \quad \mathbf{2^2} \times \mathbf{3} \times \mathbf{7}$
- $(1) \quad 2^2 \times 3$
 - $(2) \quad \mathbf{3^2} \times \mathbf{5}$
 - $(3) \quad 3 \times 5^2$
- 9 (1) $86 = 2 \times 43$
 - (2) $72 = 2^3 \times 3^2$
 - (3) $44 = 2^2 \times 11$
- $10 \quad (1) \quad 2^4 \times 3$
 - $(2) \quad 7 \times 17$
 - $(3) \quad \mathbf{2^3} \times \mathbf{3^2} \times \mathbf{5}$
- - (2) $76 = 2^2 \times 19$
 - (3) $68 = 2^2 \times 17$
- - (2) $87 = 3 \times 29$
 - (3) $380 = 38 \times 10 = 2^2 \times 5 \times 19$
- $(1) \quad 24 = 2^3 \times 3$
 - (2) $72 = 2^3 \times 3^2$
 - (3) $180 = 2^2 \times 3^2 \times 5$
- $14 \quad (1) \quad 3 \times 41$

- $(2) \quad \mathbf{3^3} \times \mathbf{5}$
- $(3) \quad \mathbf{2^4} \times \mathbf{7}$
- $15 \quad (1) \quad 24 = 2^3 \times 3$
 - (2) $252 = 2^2 \times 3^2 \times 7$
 - (3) $231 = 3 \times 7 \times 11$
- $16 \quad (1) \quad 3 \times 5^2 \times 7$
 - $(2) \quad \mathbf{2} \times \mathbf{3^2} \times \mathbf{23}$
 - $(3) \quad \mathbf{2^3} \times \mathbf{3} \times \mathbf{11}$
- - $(2) \quad \mathbf{3} \times \mathbf{17}$
 - $(3) \quad \mathbf{2^3} \times \mathbf{5}$
 - $(4) 3^3$
- $18 \quad (1) \quad 36 = 2^2 \times 3^2$
 - (2) $66 = 2 \times 3 \times 11$
 - (3) $78 = 2 \times 3 \times 13$
 - (4) $92 = 2^2 \times 23$
- 19 (1) $16 = 2^4$
 - (2) $21 = 3 \times 7$
 - (3) $35 = 5 \times 7$
 - (4) $48 = 2^4 \times 3$
- $(1) \quad 20 = 2^2 \times 5$
 - (2) $78 = 2 \times 3 \times 13$

$$(3) \quad \mathbf{30} = \mathbf{2} \times \mathbf{3} \times \mathbf{5}$$

(4)
$$56 = 2^3 \times 7$$

$$(1) \quad 44 = 2^2 \times 11$$

(2)
$$105 = 3 \times 5 \times 7$$

(3)
$$64 = 2^6$$

(4)
$$45 = 3^2 \times 5$$

(1)
$$34 = 2 \times 17$$

(2)
$$18 = 2 \times 3^2$$

(3)
$$9 = 3^2$$

(4)
$$56 = 2^3 \times 7$$

$$(1) \quad 40 = 2^3 \times 5$$

(2)
$$52 = 2^2 \times 13$$

(3)
$$90 = 2 \times 3^2 \times 5$$

(4)
$$96 = 2^5 \times 3$$

$$(1) \quad 2 \times 13$$

$$(2) \quad 2 \times 5 \times 7$$

(3)
$$2 \times 3 \times 7$$

$$(4) \quad \mathbf{2^3} \times \mathbf{7}$$

$$25 (1) 81 = 34$$

(2)
$$125 = 5^3$$

(3)
$$165 = 3 \times 5 \times 11$$

(4)
$$98 = 2 \times 7^2$$

$$(1) \quad 30 = 2 \times 3 \times 5$$

(2)
$$45 = 3^2 \times 5$$

(3)
$$24 = 2^3 \times 3$$

(4)
$$40 = 2^3 \times 5$$

(1)
$$65 = 5 \times 13$$

(2)
$$56 = 2^3 \times 7$$

(3)
$$87 = 3 \times 29$$

(4)
$$39 = 3 \times 13$$

$$(1) \quad 24 = 2^3 \times 3$$

(2)
$$36 = 2^2 \times 3^2$$

(3)
$$91 = 7 \times 13$$

(4)
$$75 = 3 \times 5^2$$

$$(1) 28 = 2^2 \times 7$$

(2)
$$33 = 3 \times 11$$

(3)
$$26 = 2 \times 13$$

(4)
$$45 = 3^2 \times 5$$

$$\boxed{30} \quad (1) \quad 3 \times 5 \times 13$$

$$(2) \quad \mathbf{3} \times \mathbf{7^2}$$

$$(3) \quad 2 \times 3^2 \times 17$$

(4)
$$2^5 \times 3^2$$

$$(1) 146 = 2 \times 73$$

(2)
$$255 = 3 \times 5 \times 17$$

(3)
$$360 = 2^3 \times 3^2 \times 5$$

(4)
$$400 = 2^4 \times 5^2$$

$$32 \quad (1) \quad 5 \times 7$$

(2)
$$2^3 \times 3^2$$

$$(3) \quad \mathbf{2^4} \times \mathbf{3} \times \mathbf{5}$$

$$(4) \quad 5 \times 11 \times 13$$

$$(1) \quad 36 = 2^2 \times 3^2$$

(2)
$$120 = 2^3 \times 3 \times 5$$

(3)
$$250 = 2 \times 5^3$$

(4)
$$286 = 2 \times 11 \times 13$$

$$(1) \quad 228 = 2^2 \times 3 \times 19$$

(2)
$$546 = 2 \times 3 \times 7 \times 13$$

(3)
$$294 = 2 \times 3 \times 7^2$$

(4)
$$825 = 3 \times 5^2 \times 11$$

- 40 9
- 41 121
- 42 1:3
 - 2:4
 - 3:**5**
 - 4:6
- 43 C
- 44 1:1
 - 2:2
 - 3:**3**

Permutation and Combination

- **1** 3
- 2 4
- 3 6
- 4 B
- 5 15

- 6 20
- 7 35
- 8 D
- 9 20
- 10 D 11 B
- 12 15
- 13 ₂₈
- **14** 20
- **15** 336
- 16 ₁₅
- **17** (1) **120**
 - (2) **120**
- 18 216
- 19 ₂₁₀

20 180

- 21 (1) 840

 - (2) **720**
 - (3) 480
 - (4) 360

G5 [C1] AMC 8

- 1 E 2 C 3 D 4 B 5 B 6 D 7 A 8 B 9 B 10 B 11 E
- 12 C 13 E 14 C 15 A 16 D 17 D 18 B 19 C 20 B 21 B 22 D
- 23 B 24 C 25 C
- 26 2500
- 27 Thursday
- 28 g
- 29 **34**
- 30 24
- 31 ₅₀
- 32 74
- 33 7
- 34 120

- 35 ₂₆
- 36 ₇₂
- 37 4480
- 38 3.7
- 39 74
- 40 4.5
- 41 1015
- 42 72
- 43 126
- 44 12
- 45 ₁₈

G5 [C2] Think One on One

- **1** 500
- $2 \frac{1}{235}$
- 3 53.55
- 4 2
- $5 \quad 2011 \frac{2011}{2012}$
- 6 45
- 7 0.48
- 8 3991
- 9 90
- 10 ₂₆
- 11 72
- 12 18

- 13 115
- 14 90
- 15 7
- 16 ₆₃
- **17** 146
- 18 1700
- 19 ₅₀
- 20 70
- 21 120
- 22 972
- 23 9750
- 24 300
- 25 ₂₀₀₂

- 26 19
- 27 420
- 28 Sunday

G5 [C3] Think Cup

