学而思美国ONLINE

学前8小低数学课程体系

Think Academy 学前和小学低年级长期班体系专为 3-8岁的小朋友打造,提供专业、系统且全面的全年数学课程。课程依据北美学生的学习特点与需求,通过培养孩子的七大能力:运算能力,逻辑推理能力,空间想象能力,测量与数据能力,创造力,表达力,和思辨力,帮助孩子在未来的理科学习中持续领先。

学前长期班根据学生的数学基础划分为Honors和Challenge体系,确保不同水平的学生都能找到适合的学习路径。两个体系的大纲相同,保障孩子们在小学低年级的阶段(PreK-G2)获得足够的思维能力锻炼,为小学高年级以后加快数学进度打好基础。此外Challenge在Honors班的基础上增加了少量的竞赛拓展,帮助孩子们顺利衔接小学高年级的奥数体系。

PreK: PreK的思维能力课不分班,孩子在进入K年级前有分班考试,结合孩子的上课表现与学习目标进入不同难度的课程。

Honors体系:专注培养孩子的七大能力,培养孩子对数学的兴趣与热爱,并具备超前学习和学习竞赛的潜力。

Challenge体系: Challenge课程在Honors课程的基础之上增加了竞赛拓展,对标Math Kangaroo的考纲,帮助孩子从小挑战数学竞赛的奖项。

幼小阶段学习规划				
班级	Pre-K	К	G1	G2
Honors 超前一年,稳固全A,直通顶班	Pre-K	→ K Honors	G1 Honors	G2 Honors
Challenge _{竞赛启蒙,加速两年,AP满贯}	Think Ability	—→ K Challenge	G1 Challenge	G2 Challenge
Competition 竞赛奠基,名师指导,晋级奥赛				G2 Pre-ACE

Think Academy US Online

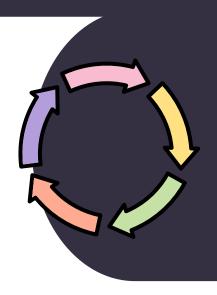
什么是七大能力?

3大综合输出能力——学以致用

4大核心数学能力——激发兴趣

- 3-8岁是儿童思维发展关键期,
- 通过情景学习保护儿童好奇心,
- 在解决问题中提升孩子的探究乐趣、搭建和锻炼孩子的思维框架,
- 培养主动思维,养成儿童面向未来的学习能力。

创造力 思辨力	复杂解题能力 加快校内进度			
表达力	学习竞赛拓展			
逻辑推理	应用题			
空间想象	小学几何	代数初步	高等函数	
数据处理	统计与图表	平面几何	高中几何	
运算能力	计算与巧算	科学课程	AP理科	
PreK-G2	G3-G5	G6-G8	G9-G12	→


课程亮点

家长省心,规划清晰

授课老师为孩子定制学习规划, 全程跟踪学习进度

- 报名课程:学习规划老师针对孩子的学习能力与目标,制定个性化学习方案。
- **上课期间:** 每月和家长**反馈孩子的学习情况**,提供有针对性的学习建议,并**监督落实孩子的提升方案**。
- **期中/期末:**每学期组织<mark>家长会</mark>,梳理孩子的学习优势和薄弱环节,并制定新学期的学习规划。

每周学习闭环, 保障学习效果

- **课前预习:** 15分钟**课前预习题**,温故而知新
- **课后作业**:每节课**配套作业**题目,老师主动和家长 反馈学生的作业完成情况。
- Office Hour: 免费作业讲解直播课,解答孩子课后不明白的题目与知识点。
- **作业解析:**每道作业配套<mark>讲解视频</mark>,随时复习错题

全年学习服务支持

- 专业客服,全年364 天 Parent APP 在线支持, 快速响应任何问题
- Parents App直接和授课老师联系,沟通更高效, 随时掌握孩子的学情表现。
- 在线作业答疑,给孩子最及时的学习帮助

Think Academy US Online

课程亮点

孩子开心, 学习更高效

精心打磨课堂设计, 让孩子爱上数学

- **互动游戏+情景化教学**,让数学课堂不再枯燥
- 金币激励,孩子可以用金币兑换实体或虚拟奖品, 给孩子更及时的正反馈,让孩子更主动地完成学习 任务和目标。

自研上课App,强化线上课程体验

- Think Academy自主研发的上课App,给孩子带来 更丰富的课上互动,包括举手上台,投票作答,选 择填空,集体讨论等互动形式,保障每3分钟一次互 动的频率,提升孩子的上课投入。
- 老师实时观察每位孩子的上课情况,保障孩子的学习体验与效果。

成就感带来底层学习动力

- 不仅课上学习高效,课后也有完善的辅导答疑服务。课后作业有视频解析,每周还有免费officehour解答孩子的问题,保障每节课都能学懂。
- 孩子在校内达到成绩和进度双领先。更愿意投入时间和精力在理科学习上,增强孩子的学习动力,自推成为理科学霸。

Contents

Basic Math 01
Number and Operations /2
Geometry / 69
Word Problems / 97
Logical Reasoning / 105
Measurement / 119
Advanced Math 133
Number and Operations / 134
Geometry / 173
Word Problems / 207
Logical Reasoning / 227
Measurement / 251
Crazy Math
MK Level 1-2 / 266
Think Cup / 299

Basic Math

Number and Operations

Addition and Subtraction within 100

Calculate with column addition or column subtraction.

$$(1) 13 + 17 = \underline{\hspace{1cm}}$$

$$33 - 28 =$$
_____.

$$(2) 26 + 34 = \underline{\hspace{1cm}}.$$

$$17 - 9 =$$
_____.

$$(3) 26 + 17 = \underline{\hspace{1cm}}$$
.

$$33 - 16 =$$
_____.

Calculate with column addition or column subtraction.

$$(1) 68 - 35 = \underline{\hspace{1cm}}$$
.

$$65 + 33 =$$
_____.

(2)
$$62 + 36 =$$
_____.

(3)
$$77 - 64 =$$
_____.

$$(1) 43 - 17 + 56 = \underline{\hspace{1cm}}.$$

$$74 - 32 + 12 =$$
_____.

$$(2) 56 - 13 + 48 = \underline{\hspace{1cm}}.$$

$$45 - 12 + 56 =$$
_____.

$$(3) 78 - 23 + 45 = \underline{\hspace{1cm}}.$$

$$85 - 33 + 17 =$$
_____.

(1)
$$31 - 28 =$$
_____.

(2)
$$43 - 18 =$$
_____.

$$47 - 38 =$$
_____.

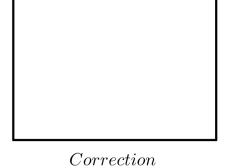
$$(3) 40 - 19 = \underline{\hspace{1cm}}$$
.

$$(4) 22 - 9 = \underline{\hspace{1cm}}.$$

$$40 - 18 =$$
_____.

$$(5) 41 - 25 = \underline{\hspace{1cm}}$$
.

Add using column addition:


$$(1) 39 + 40 = \underline{\hspace{1cm}}$$

$$(2) 38 + 51 = \underline{\hspace{1cm}}$$

$$(3) 25 + 62 = \underline{\hspace{1cm}}$$

Can you correct the mistakes?

$$\begin{array}{c}
 22 + 49 = 61 \\
 2 2 \\
 + 4 9 \\
 \hline
 6 1
 \end{array}$$

Calculate with column addition.

(1)
$$11 + 19 =$$
_____.

$$27 + 7 =$$
_____.

(2)
$$19 + 28 =$$
_____.

(3)
$$8 + 28 =$$
_____.

$$28 + 17 =$$
_____.

$$(5) 32 + 29 = \underline{\hspace{1cm}}$$
.

8 Calculate:

$$(1) 99 - (76 + 12) = \underline{\qquad} . \qquad \qquad 99 - (73 + 22) = \underline{\qquad} .$$

$$99 - (73 + 22) =$$
_____.

$$(2) 96 - (34 + 55) = \underline{} . \qquad 89 - (56 + 22) = \underline{} .$$

$$89 - (56 + 22) =$$
_____.

$$(3) 78 - (43 + 9) = \underline{\qquad} . \qquad 84 - (45 + 11) = \underline{\qquad} .$$

$$84 - (45 + 11) =$$

Add using column addition:

Tens	Ones
000	0000
000	0000

Tens	Ones
000	000
0	000

To Calculate with column addition.

(1)
$$13 + 15 =$$
_____.

(3)
$$16 + 21 =$$
_____.

$$(4) 23 + 25 = \underline{\hspace{1cm}}.$$

77 Fill correct numbers in the house.

/	8		_
	1	7	
	2		
	3		
	4		

_	7	_
	1	
	2	
	3	
	4	

Calculate with column addition or column subtraction.

$$(1) 58 + 29 =$$
____.

$$56 - 49 =$$
_____.

$$(2) 57 - 38 =$$
____.

$$86 - 48 =$$
_____.

$$(3) 57 + 38 = \underline{\hspace{1cm}}$$
.

$$86 + 48 =$$
_____.

$$(4) 29 + 78 = ____.$$

$$76 - 39 =$$
_____.

$$(1) 34 + 17 + 18 = \underline{\hspace{1cm}}.$$

$$56 + 23 + 9 =$$
_____.

$$(2) 32 + 24 + 22 = \underline{\hspace{1cm}}.$$

(3)
$$11 + 32 + 18 =$$
_____.

$$65 + 12 + 15 =$$
_____.

Calculate:

$$(1) 89 - 26 - 15 = \underline{\hspace{1cm}}.$$

$$75 - 23 - 12 =$$
_____.

$$(2) 96 - 25 - 15 = \underline{\hspace{1cm}}.$$

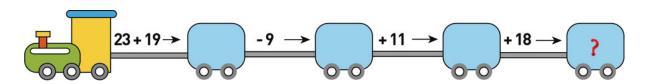
$$78 - 13 - 10 =$$
_____.

$$(3) 79 - 47 - 9 = \underline{\hspace{1cm}}.$$

$$92 - 23 - 10 =$$
_____.

(1)
$$87 - 38 =$$
_____.

$$93 - 47 =$$
_____.


(2)
$$76 - 49 =$$
_____.

$$(3) 97 - 69 = \underline{\hspace{1cm}}$$
.

(4)
$$80 - 37 =$$
_____.

$$52 - 18 =$$
_____.

16 What is the number in the last carriage?

To Calculate with column addition.

(1)
$$13 + 28 =$$
_____.

(2)
$$19 + 28 =$$
_____.

$$(4) 26 + 28 = \underline{\hspace{1cm}}.$$

$$34 + 18 =$$
_____.

$$(5) 15 + 19 = \underline{\hspace{1cm}}$$
.

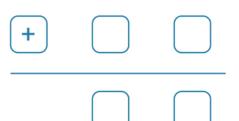
$$29 + 16 =$$
_____.

Calculate with column addition.

$$10 + 30 =$$
_____ .

$$40 + 15 =$$
_____ .

$$18 + 11 =$$
______ .


$$12 + 33 =$$
_____ .

$$10 + 19 =$$
_____ .

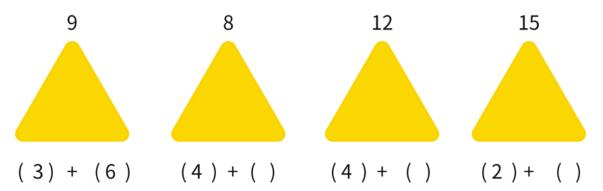
19 Calculate with column addition.

(1)
$$27 + 52 =$$
_____.

(2)
$$73 + 11 =$$
_____.

(3)
$$88 + 10 =$$
_____.

$$(4) 43 + 16 = \underline{\hspace{1cm}}$$


(5)
$$72 + 14 =$$
_____.

(6)
$$52 + 17 =$$
_____.

$$(7) 87 + 12 = \underline{\hspace{1cm}}$$
.

(8)
$$27 + 31 =$$
_____.

20 Observe the pattern and fill the blanks.

(1)
$$72 - 21 =$$
_____.

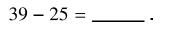
$$98 - 48 =$$
_____.

(2)
$$62 - 50 =$$
_____.

$$78 - 65 =$$
_____.

$$(3) 98 - 65 = \underline{\hspace{1cm}}$$
.

$$76 - 43 =$$
_____.


$$(4) 64 - 32 = \underline{\hspace{1cm}}.$$

$$75 - 54 =$$
_____.

22 Calculate with column addition or column subtraction.

(1)
$$38 + 11 =$$
_____.

$$(2) 25 + 14 = \underline{\hspace{1cm}}.$$

$$48 - 15 =$$
_____.

(3)
$$39 - 17 =$$
_____.

$$46 - 15 =$$
_____.

$$39 + 10 =$$
_____.

(6)
$$28 - 13 =$$
_____.

(1)
$$87 - 72 =$$
_____.

	l	

(2)
$$76 - 35 =$$
_____.

$$87 - 47 =$$
_____.

(3)
$$98 - 74 =$$
____.

Add using column addition:

Tens Ones



Tens Ones

	Hundreds	Tens	Ones
+			

	Hundreds	Tens	Ones
+			

25 Calculate with column addition

(1)
$$73 + 15 =$$
_____.

$$(2) 63 + 13 = \underline{\hspace{1cm}}$$
.

(3)
$$81 + 15 =$$
_____.

$$(5) 62 + 25 = \underline{\hspace{1cm}}$$
.

(6)
$$71 + 15 =$$
_____.

$$(7) 65 + 12 = \underline{\hspace{1cm}}$$
.

(8)
$$33 + 35 =$$
_____.

Calculate with column addition.

$$(1) 56 + 27 = \underline{\hspace{1cm}}$$
.

$$(2) 48 + 28 = \underline{\hspace{1cm}}$$

(3)
$$78 + 22 =$$
_____.

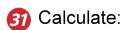
$$(2) 66 + 13 = \underline{\hspace{1cm}}$$
.

$$(3) 23 + 46 = \underline{\hspace{1cm}}$$
.

Mia made a mistake when she did column addition. Where is the mistake? Help her correct it!

$$39 + 62 = ?$$

Correction:



$$56 - 23 - 9 =$$
_____.

$$(2) 54 - 12 - 14 = \underline{\hspace{1cm}}.$$

$$87 - 23 - 16 =$$
_____.

$$(3) 95 - 17 - 23 = \underline{\hspace{1cm}}.$$

$$(1) 34 + 17 - 8 = \underline{\hspace{1cm}}.$$

$$56 - 23 + 9 =$$
_____.

$$(2) 35 + 45 - 23 = \underline{\hspace{1cm}}.$$

$$12 - 8 + 57 =$$
_____.

$$(3) 64 + 34 - 16 = \underline{\hspace{1cm}}.$$

$$65 - 32 + 19 =$$
_____.

Calculate with column subtraction.

(1)
$$47 - 13 =$$
_____.

$$45 - 10 =$$
_____.

(2)
$$31 - 11 =$$
_____.

$$(3) 48 - 17 = \underline{\hspace{1cm}}$$
.

$$(4) 38 - 17 = \underline{\hspace{1cm}}$$
.

$$21 - 11 =$$
_____.

$$(5) 46 - 15 = \underline{\hspace{1cm}}$$
.

$$29 - 16 =$$
_____.

Add using column addition:

(1)
$$28 + 70 =$$

$$(2) 46 + 61 = \underline{\hspace{1cm}}$$

(3)
$$36 + 72 =$$

Calculate with column addition or column subtraction.

$$13 + 28 =$$
_____.

(2)
$$17 + 17 =$$
_____.

(3)
$$19 + 14 =$$
_____.

$$46 - 28 =$$
_____.

(5)
$$17 + 25 =$$
_____.

$$42 - 28 =$$
_____.

35 Calculate:

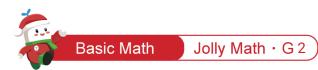
7 2

(1) + 1 3 3 2

(2) + 1 4

(3) 4 4 6

(4) + 2 9



36 Calculate with column subtraction.

(1)
$$43 - 24 =$$
_____.

(2)
$$26 - 17 =$$
_____.

$$(3) 47 - 18 = \underline{\hspace{1cm}}$$
.

$$(5) 31 - 13 = \underline{\hspace{1cm}}$$
.

3 Calculate:

$$(1) 23 + 50 + 14 = \underline{\hspace{1cm}}.$$

$$32 + 65 + 3 =$$
_____.

$$(2) 45 + 2 + 15 = \underline{\hspace{1cm}}.$$

$$35 + 36 + 8 =$$
_____.

$$(3) 73 + 5 + 14 = \underline{\hspace{1cm}}.$$

$$25 + 43 + 32 =$$
_____.

33 Calculate with column subtraction.

$$(1) 48 - 32 = \underline{\hspace{1cm}}$$
.

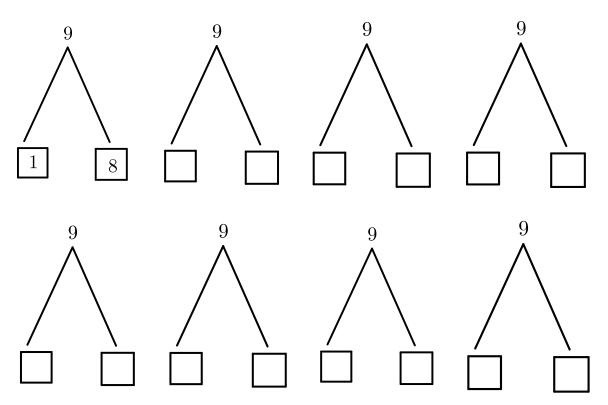
$$49 - 21 =$$
_____.

(2)
$$39 - 12 =$$
_____.

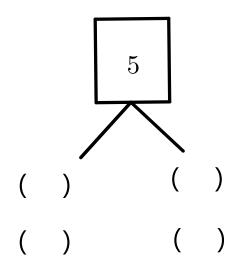
$$(3) 48 - 32 = \underline{\hspace{1cm}}$$
.

$$49 - 27 =$$
_____.

$$(4) 46 - 21 = \underline{\hspace{1cm}}.$$


$$29 - 20 =$$
_____.

(5)
$$33 - 10 =$$
____.


$$45 - 24 =$$
_____.

(6)
$$33 - 11 =$$
_____.

Fill numbers in the blanks.

How many different ways can you divide 5 apples into 2 groups? (Each group has at least 1 apple.)

41 Calculate with column addition or column subtraction.

$$(1) 98 + 14 = \underline{\hspace{1cm}}.$$

(2)
$$76 + 24 =$$
_____.

$$67 - 49 =$$
_____.

$$(3) 67 - 39 = \underline{\hspace{1cm}}$$

$$76 - 49 =$$
_____.

$$(4) 58 - 29 = \underline{\hspace{1cm}}.$$

$$76 + 49 =$$
_____.

Calculate with column subtraction.

$$(1) 66 - 9 = \underline{\hspace{1cm}}$$
.

(2)
$$77 - 69 =$$
 _____. $83 - 38 =$ _____.

$$(3) 56 - 29 = \underline{\hspace{1cm}} . \qquad 65 - 56 = \underline{\hspace{1cm}} .$$

$$(4) 78 - 59 = \underline{\hspace{1cm}} . \qquad 61 - 16 = \underline{\hspace{1cm}} .$$

Calculate with column addition.

(1)
$$32 + 14 =$$
_____.

(2)
$$33 + 15 =$$
_____.

(3)
$$34 + 12 =$$
_____.

(5)
$$10 + 33 =$$
_____.

(6)
$$11 + 15 =$$
_____.

Jolly Math · G 2

@ Calculate:

3 6

6 3 5

(1) + 8 (2) + 3 5

2 7

6 6

(3) + 8 (4) + 2 7

45 Calculate with column addition.

(1)
$$88 + 28 =$$
_____.

$$33 + 57 =$$
_____.

(2)
$$78 + 39 =$$
_____.

(3)
$$15 + 56 =$$
_____.

$$49 + 56 =$$
_____.

(1)
$$78 - (33 + 24) =$$
_____. $57 - (16 + 32) =$ _____.

$$57 - (16 + 32) =$$
_____.

(2)
$$63 - (13 + 9) =$$
 . $84 - (45 + 12) =$.

$$84 - (45 + 12) =$$

$$(3) 94 - (45 + 23) =$$

$$(3) 94 - (45 + 23) = \underline{} . \qquad 84 - (36 + 16) = \underline{} .$$

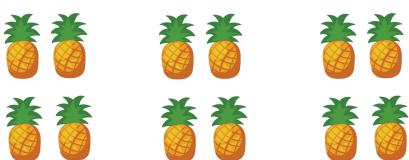
Calculate with column addition or column subtraction.

(1)
$$33 + 12 =$$
_____.

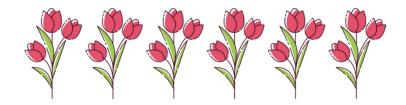
(2)
$$48 - 13 =$$
_____.

(3)
$$47 - 13 =$$
_____.

$$44 - 21 =$$
_____.


(5)
$$47 - 16 =$$
_____.

$$23 + 23 =$$
_____.


(6)
$$11 + 28 =$$
_____.

Multiplication

There are ____ × ___ = ___ pineapples.

There are _____ x ___ = ____ flowers.

3 Write numbers on the petals.

Calculate:

6 Observing the picture below, write the multiplication equation.

(1)
$$6 \times 6 =$$
_____.

$$2 \times 2 = \underline{\hspace{1cm}}.$$

(2)
$$4 \times 7 =$$
_____.

$$7 \times 2 = \underline{\hspace{1cm}}.$$

(3)
$$4 \times 4 =$$
_____.

$$6 \times 5 = \underline{\hspace{1cm}}$$
.

(4)
$$9 \times 6 =$$
_____.

$$4 \times 9 = \underline{\hspace{1cm}}$$
.

There are _____ × ____ = ____ flowers in the picture.

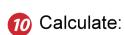
There are _____ × ____ = ____ apples.

Calculate:

(1)
$$3 \times 8 =$$
_____.

$$7 \times 4 = \underline{\hspace{1cm}}.$$

(2)
$$2 \times 9 =$$
_____.


$$3 \times 5 = \underline{\hspace{1cm}}$$
.

(3)
$$8 \times 8 =$$
_____.

$$5 \times 6 = \underline{\hspace{1cm}}$$
.

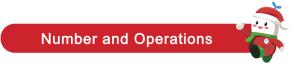
(4)
$$7 \times 2 =$$
_____.

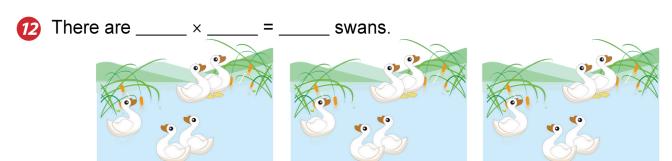
$$4 \times 4 = \underline{\hspace{1cm}}.$$

(2)
$$2 \times 5 =$$
_____.

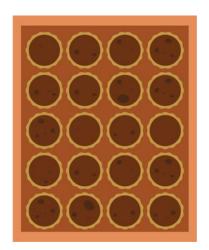
(3)
$$7 \times 5 =$$
_____.

(4)
$$2 \times 8 =$$
_____.

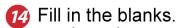

(5)
$$8 \times 5 =$$
_____.


(2)
$$7 \times 9 =$$
_____.

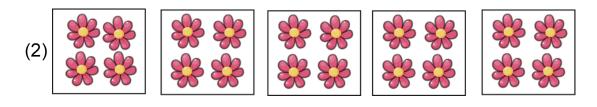
(3)
$$9 \times 3 =$$
_____.


(4)
$$7 \times 7 =$$
_____.

(5)
$$6 \times 7 =$$
_____.



There are ____ × ___ = ___ pieces of chocolate



Number of apples: $___ \times ___ = ___$.

Number of flowers: $\underline{\hspace{1cm}} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

15 Calculate:

(1)
$$4 \times 6 =$$
_____.

$$4 \times 2 = \underline{\hspace{1cm}}$$
.

(2)
$$4 \times 9 =$$
_____.

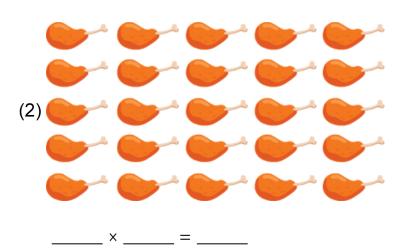
$$6 \times 2 =$$
_____.

(3)
$$2 \times 5 =$$
_____.

$$5 \times 8 = \underline{\hspace{1cm}}$$
.


(4)
$$7 \times 8 =$$
_____.

$$4 \times 7 = \underline{\hspace{1cm}}$$
.


(5)
$$6 \times 8 =$$
_____.

$$9 \times 9 = \underline{\hspace{1cm}}.$$

6 Observing the pictures below, write multiplication equations.

_____ × ____ = ____

There are _____ × ____ = ____ vegetables.

18 There are ____ × ___ = ___ apples.

(79) Calculate:

$$3 \times 2 =$$

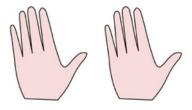
$$4 \times 2 =$$

$$3 \times 4 =$$

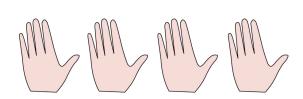

$$2 \times 4 =$$

$$1 \times 4 =$$

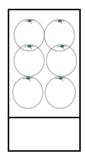
$$3 \times 3 =$$

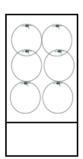

$$1 \times 4 = \qquad \qquad 3 \times 3 = \qquad \qquad 2 \times 3 = \qquad \qquad 4 \times 4 =$$

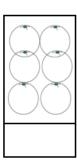
$$4 \times 4 =$$



20

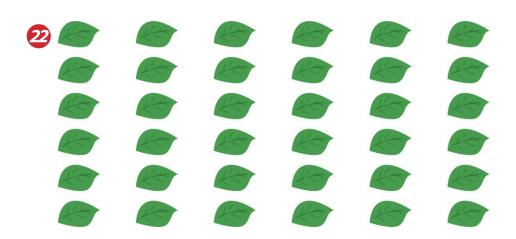

There are 5×2 fingers.


(1)



There are _____ × ____ fingers.

(2)



There are _____ × ____ circles.

② Observing the picture below, write the multiplication equation:

_____× ____ = ____

There are _____ × ____ = ____ leaves.

These apples cost ____ × ___ = ___ dollars.

2 dollars 2 dollars

2 dollars

2 dollars

2 dollars

2 Calculate:

$$4 \times 3 = \underline{\hspace{1cm}}$$
.

(2)
$$2 \times 8 =$$
_____.

$$2 \times 3 = \underline{\hspace{1cm}}$$
.

(3)
$$9 \times 8 =$$
_____.

$$6 \times 3 =$$
_____.

(4)
$$6 \times 8 =$$
_____.

$$3 \times 3 = \underline{\hspace{1cm}}$$
.

(5)
$$2 \times 7 =$$
_____.

$$5 \times 3 = \underline{\hspace{1cm}}$$
.

$$5 \times 8 = \underline{\hspace{1cm}}$$
.

(2)
$$3 \times 6 =$$
_____.

$$2 \times 4 = \underline{\hspace{1cm}}$$
.

(3)
$$4 \times 6 =$$
_____.

$$5 \times 5 = \underline{\hspace{1cm}}$$
.

(4)
$$8 \times 6 =$$
_____.

$$3 \times 2 = \underline{\hspace{1cm}}$$
.

26 Calculate:

$$5 \times 9 = \underline{\hspace{1cm}}$$
.

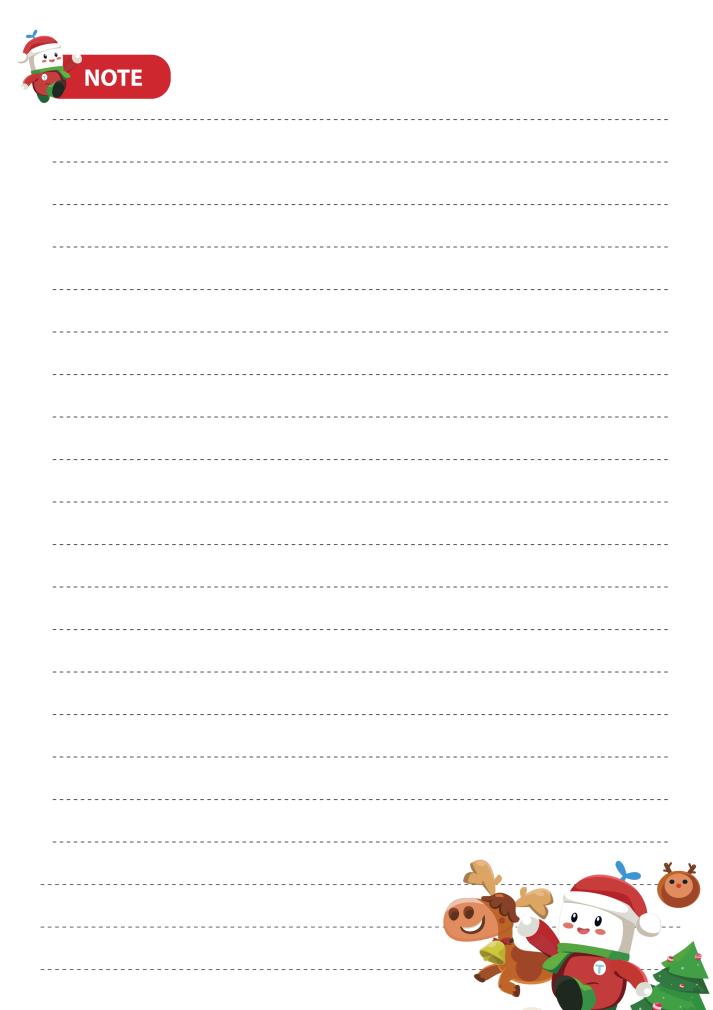
(2)
$$2 \times 7 =$$
_____.

$$3 \times 8 = \underline{\hspace{1cm}}$$
.

(3)
$$6 \times 7 =$$
_____.

$$7 \times 9 = \underline{\hspace{1cm}}.$$

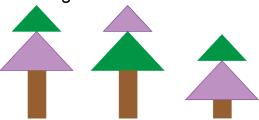
(4)
$$6 \times 9 =$$
_____.

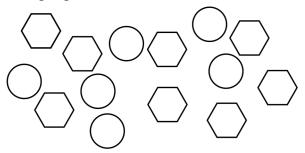

$$3 \times 9 = \underline{\hspace{1cm}}$$
.

(5)
$$7 \times 7 =$$
_____.

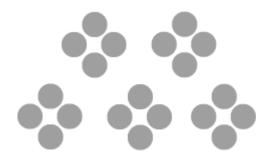
$$8 \times 9 = \underline{\hspace{1cm}}$$
.

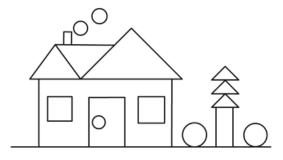
6/



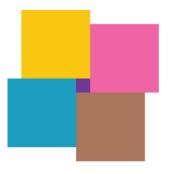


Plane Shapes


- According to the description, circle the correct tree.
 - a) The rectangle is under the other shapes
 - b) The pink triangle is on the top of the green triangle.


How many circles are there in the following figures?

How many circles are there? _____

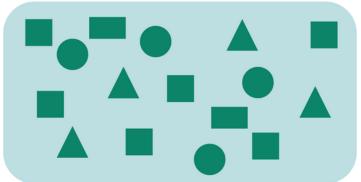

Count the number of shapes in the picture below and fill in the blanks.

Shapes		\triangle	\circ
Numbers	 		

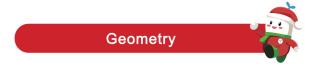
5 There are ____ squares below.

6 Count the numbers of each plane shape in the following graph and fill in the chart.

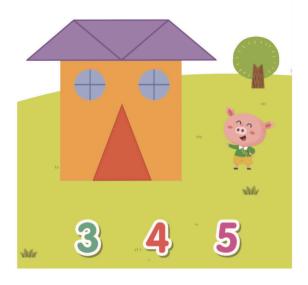
Rectangle	Triangle

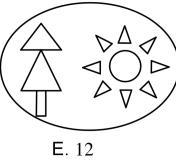


Count the number of each plane shape in the figure below.



	()
	()
\triangle	()
	()
0	()


8 Count the number of each shape.


Count the number of the triangles in this house and circle the answer.

How many triangle(s) is/are there?

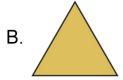
10 Count the number of triangles in the picture.

A. 8

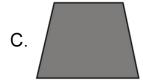
B. 9

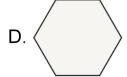
C. 10

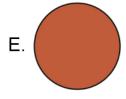
D. 11

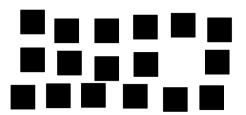


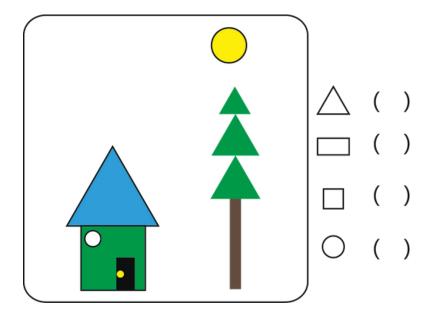
② Star's room is really messy. Help her tidy her room by matching each of her things in boxes with the same shape.





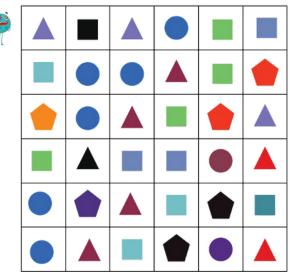






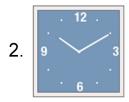
How many squares are there?

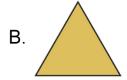
Count the number of each plane shape and fill in the blanks.



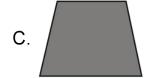
There are _____ squares, ____ rectangles, ____ triangles, and ____ cirlces in the following graph.

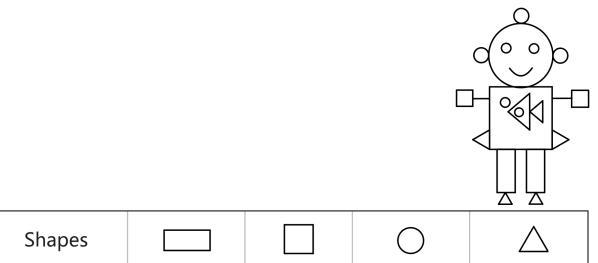
Please follow the rule of "triangle-square-pentagon-circle" and find the way out of the maze.





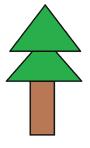
Star's room is really messy. Help her tidy her room by matching each of her things in boxes with the same shape. (You can trace these shapes with your finger.)

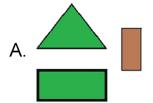




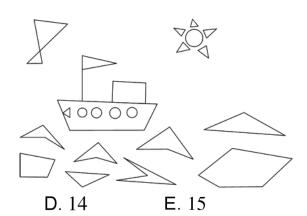
Numbers

13 Count the number of shapes in the robot below and fill in the blanks.

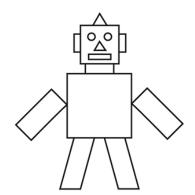



10 Look at The Big Dipper in the sky! How many line segments are there?



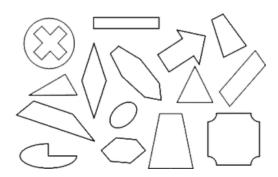

20 Which group of shapes can form this tree?

20 Count the number of triangles.

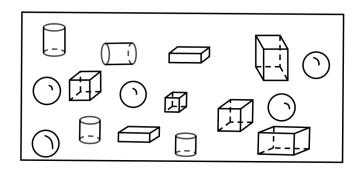

A. 11

B. 12

C. 13



Count the number of each plane shape that form the robot below?


	()
	()
\triangle	()
0	()
	()

B How many triangles are there in the following figures?

Solid Figures

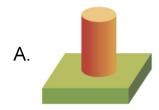
Count and fill in the blanks:

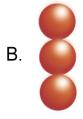
There are _____ cuboids.

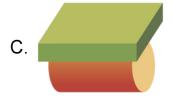
There are ____ cubes.

There are ____ cylinders.

There are ____ spheres.

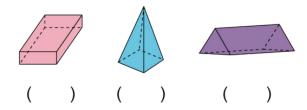

2 How many faces does the solid figure have?





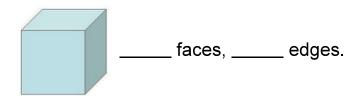
Basic Math

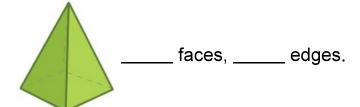
Ashley wants to stack models with solid shapes. Which of the following models is the correct way to stack?

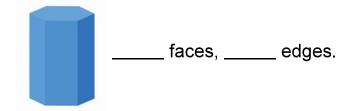


🕢 Fill the blanks.			
(1) A cube has	faces,	vertices,	edges, and each
edge has the	(same\differen	t) length.	

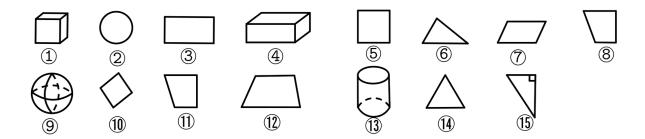
(2) A cuboid has _____ vertices, ____ edges and ____ faces, and each face has ____ opposite face.



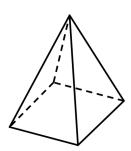

How many faces does each of the following solid shapes have?



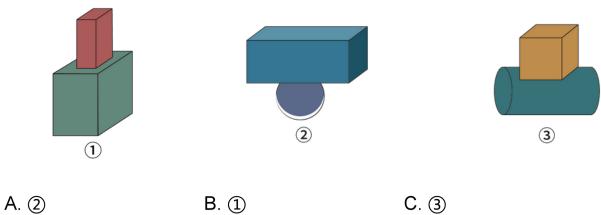
- A. 5, 5, 5 B. 6, 5, 5 C. 6, 4, 5
- D. 5, 5, 5


How many faces and sides does each of the following figures have?

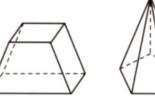
Observe the following figures and fill the blanks.

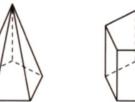


1.solid figures _____


2.plane figures _____

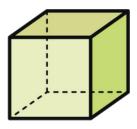
3.triangles _____

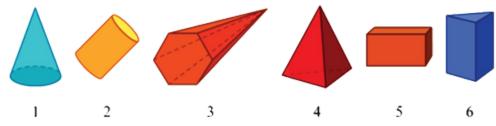

There are _____ faces in the figure below.



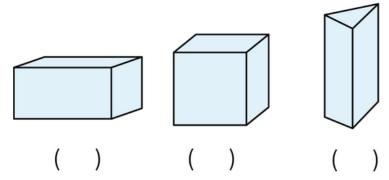
Q Ruth wants to stack models with solid shapes. Which of the following models is the correct way to stack?

How many vertices, faces, and edges does each of the following figures have, respectively?

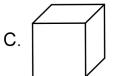



Till the blanks.

(1) The six faces of a cube are _____ (the same/different).


(2) The 12 edges of a cube has _____ lengths.

12 How many faces does each of the following figures have?


13 How many faces does each of the following figures have, respectively?

Which of the following shapes has the most faces?

15 Which solid shape below can be put in both the round hole and the triangular hole?

16 Match the objects to the correct solid shapes.

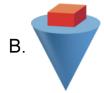
1.

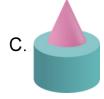
3.

C.

D.

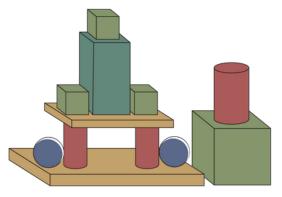
F.




Trind the total number of edges of a cube and a cuboid.

- Read the following sentences. Draw " $\sqrt{}$ " after the correct ones and draw " \times " after the wrong ones.
 - 1. Both cuboid and cube have 8 faces, 12 edges, and 6 vertices.
 - 2. The edges of a cuboid must be longer than those of a cube
 - 3. A cylinder has two faces.

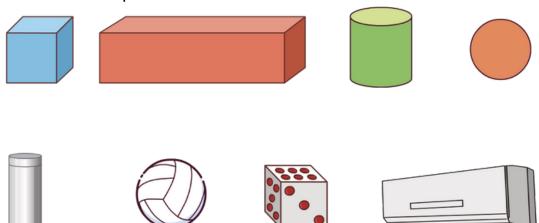
Justin wants to stack models with solid shapes. Which of the following models is the correct way to stack?

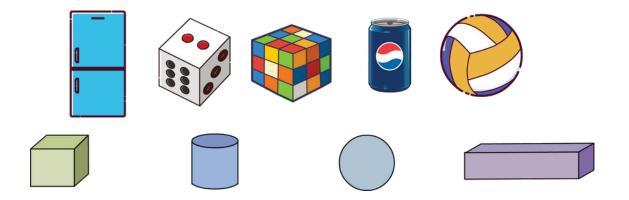


20 Count the number of solid shapes and fill in the table.

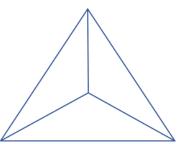
Cuboid	Cube	Cylinder	Sphere

21 Match the objects to the correct solid shapes.





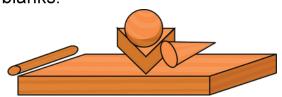
Match the solid shapes with the correct items!



What are the solid shapes of these objects? Connect these objects with the matched solid shapes.

23 There are _____ triangles in total in the figure below.

25 Which of these objects are prisms? Circle them!



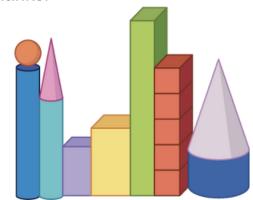
26	Ohserve	the	following	figures	and fill	the	hlanks:
20	CD3CI VC	uic	Tonowing	ngares	and iii	uic	Diai illo.

There are ____ cylinder(s).

There are ____ cuboid(s).

There are _____ pyramid(s).

Count the number of shapes and fill in the blanks.


There are _____ sphere(s).

There are ____ cuboid(s).

There are ____ cube(s).

There are ____ cone(s).

There are ____ cylinder(s).

- 28 Which solid's faces are all squares?
 - A. cylinder
- B. cone
- C. rectangle
- D. cube

- Match the following solid shapes with the correct names.
 - 1.

A. Cylinder

2.

B. Sphere

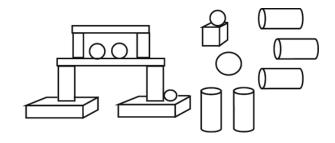
3.

C. Cube

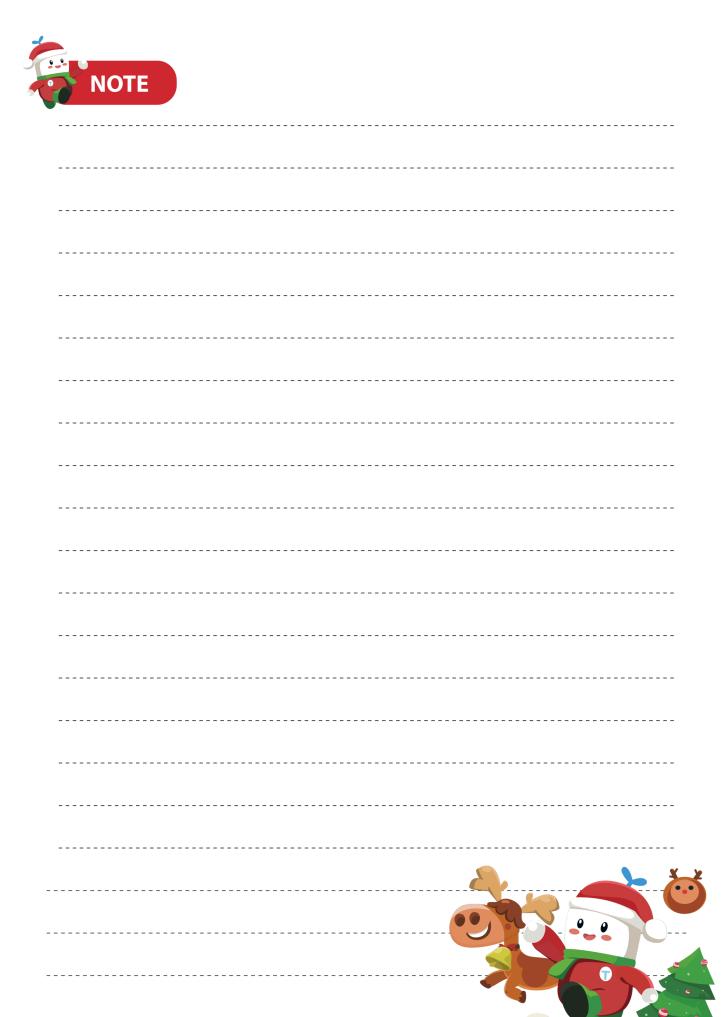
4.

D. Pyramid

5.


E. Rectangular Prism (Cuboid)

6.


F. Cone

30 Which kind of solid shape does not appear in the model below?

- A. Sphere
- B. Cube
- C. Cylinder
- D. Pyramid

Word Problems

Addition and Subtraction Word Problems

Peter starts doing problems on a math practice book. He finishes 35 problems by himself. He finishes 15 more problems with the help from Dennis. There are 34 math problems left. In this math practice book, there are _____ problems in total.

2 Jose's Food Truck prepares 100 taccos and burritos in total and 55 of the items are taccos. Jose has _____ more taccos than burritos.

The fisherman catches 150 fish. He goes to the market and sells 50 tuna and 20 salmon. Now, the fisherman has _____ fish left.

Peter has 120 pounds of grass. He feeds 20 pounds to his cows and 35 pounds to his sheep. At the end, Peter has _____ pounds of grass left.

6 A toy store has 60 teddy bears for sale. There are also 12 more toy cars than teddy bears in the store. Altogether, the store has _____ teddy bears and toy cars.

6 Irene bakes a total of 135 milk cookies and chocolate cookies. She sells 35 cookies at the market. Now, Irene has 30 chocolate cookies and _____ milk cookies left.

7	The gym	prepares 50 to	wels for ped	ople to use	. Today, the	manager	buys
	2 boxes c	of new towels.	In each box	x, there are	e 25 towels.	Now, the	gym
	has	towels ready	for use.				

During the last summer vacation, Nina collected 15 more shells than what she collects this summer. During this summer vacation, she collects 25 shells. Altogether, Nina has _____ shells.

Monica has a bag of gold coins. She hides 36 gold coins in the backyard and 24 gold coins in the cabinet. Now, Monica has 70 coins left in the bag. In the beginning, Monica has _____ gold coins in the bag.

Nancy makes 2 boxes of cupcakes for sale, and there are 36 cupcakes in each box. She also makes 42 bottles of juice. Altogether, she prepares _____ items for sale.

11 Judy buys 40 donuts for a party. Mira buys 25 more donuts than Judy. In total, they buy _____ donuts.

Sammy picks a total of 164 strawberries and blueberries in the orchard. If he picks 50 strawberries, and picks _____ less strawberries than blueberries.

13	Michael	collects	а	total	of	85	flower	and	star	stamps.	lf	he	collects	15
	flower st	amps, he	e h	nas		_ n	nore sta	ır sta	mps	than flow	er	sta	mps.	

The Adventure Park sells different colors of balloons. By the afternoon, the Adventure Park sells 75 red balloons and 33 green balloons, There are still 20 balloons for sale. In the beginning, the Adventure Park has _____ balloons for sale.

There are 95 people in a train. The train arrives at Stop A and 20 people get off. The train goes to Stop B and 10 people get off. In total, there are _____ people in the train at this point.

16	Nancy	paints	a total	of	116 rec	l and	green	stone	s for	а	project.	She is	S
	clumsy	and	loses	12	stones	. No	w, Na	incy ł	nas 🏻	23	green	stone	S
	and	red	d stones	3.									

 \bigcirc John has a total of 145 red and blue marbles. He gives Tim 25 marbles. Now, John has 60 red marbles and _____ blue marbles.

Jessie has 53 stamps in her collection. Ranson has 42 stamps more than Jessie. In total, they have _____ stamps in their collection.

There were 70 books in Sara's Bookstore. Then, she buys 2 new boxes of books, and there are 20 books in each box. Now, Sara has _____ books in the bookstore.

The king uses 182 diamonds to make an artpiece. He uses 60 pink diamonds and 12 yellow diamonds. Now, the king has _____ diamonds left.

Jack has a few baskets of strawberries. He uses 54 strawberries to make jelly and sells 70 starwberries at the local market. Now, Jack still has 40 strawberries. In the beginning, Jack has _____ strawberries in total.

Patterns in Shapes

Fill the correct figure in the blank.

 \bigcirc

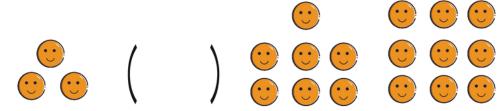
000

 \bigcirc

000 —

Find the pattern and draw the next figure.

(1)


(2) X X X X X X

According to the pattern, draw the next figure in the blank.

How many smiling faces should we put in the blank?

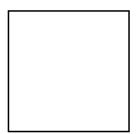
Draw the next fruit in the blank.

6 According to the pattern below, which shape should be in the blank with the question mark in the next figure?

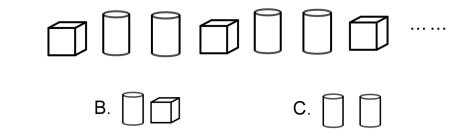
Find the pattern and fill in the blanks!

8 How many dots should we put in the blank?

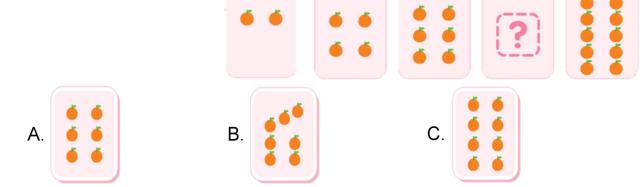
In the following pattern, fill in the blank.



70 Find the pattern and draw the fourth figure.

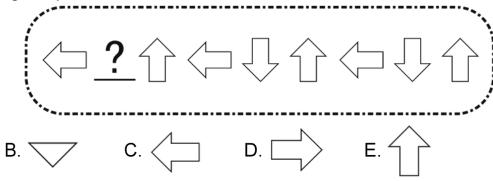

Till the correct images in the blanks.

According to the pattern, what are the next two figures?

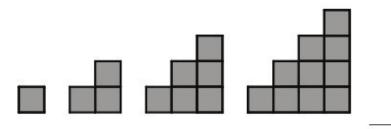


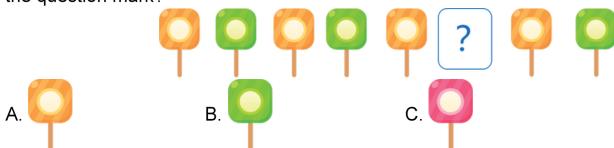
Draw the correct images on the blank lines.

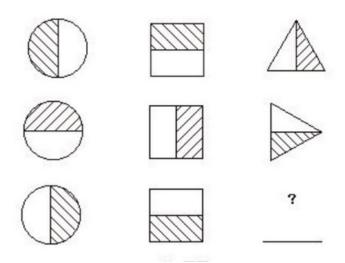
A. 🗍 🗍


According to the pattern below, which shape should be in the blank with the question mark?

15 Find the missing shape.




According to the pattern, draw the figure in the blank.


Tind the pattern and fill in the blanks!

According to the pattern below, which shape should be in the blank with the question mark?

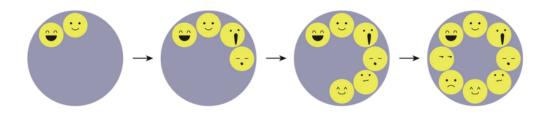
19 According to the pattern, draw the figure in the blank.

20 Draw the correct figure in the blank.

2 According to the pattern below, what will be the fourth graph?

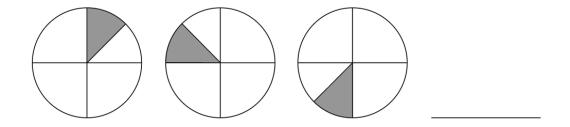
В. <u></u>

According to the pattern below, which shape should be in the blank with the question mark?



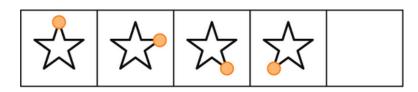
23

count and figure out the pattern.



____ pens fewer at a time.

____ more emojis at a time.


By looking at the pattern in the three figures as shown below, can you draw the fourth figure?

Jolly Math · G 2

25 Find the pattern and choose the correct shape for the blank.

Patterns in Numbers

Count and fill in the blanks.

Count and fill in the blanks.

Find the missing numbers.

Find the patterns and fill in the blanks.

5 Find the patterns and fill in the blanks.

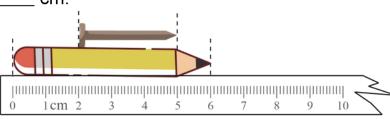
6 Count and fill in the blanks.

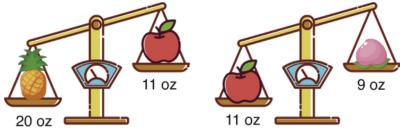
Find the patterns and fill in the blanks.

Measurement

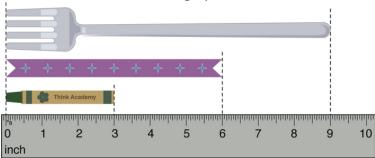
Measuring and Comparing

Help Joan balance each of the scales. Write the missing weights on the empty apples.



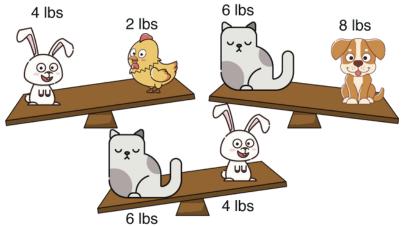

The length of the pencil is ____ cm.

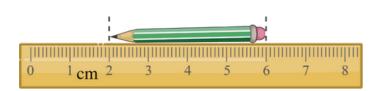
The length of the nail is ____ cm.



Compare the weights of the fruits.

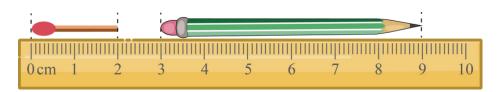
- (1) The pineapple is _____ oz.
- (2) The peach is _____ oz.

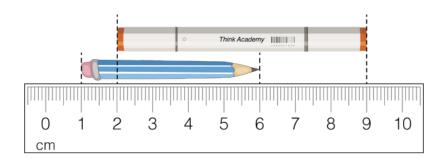

Observe the figures below and answer the following questions.


The ribbon is _____ inches long.

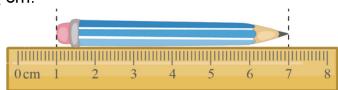
The fork is _____ (longer/shorter) than the crayon by ____ inches.

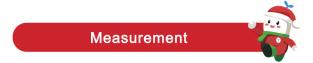
6 Answer the following questions based on the scales below.


- (1) The rabbit is _____ (heavier/lighter) than the chicken by ____ lbs.
- (2) The cat is _____ (heavier/lighter) than the dog by _____ lbs.
- (3) The rabbit is _____ (heavier/lighter) than the cat by ____ lbs.
- 6 This pencil is ____ cm long.


The length of the matchstick is ____ cm.

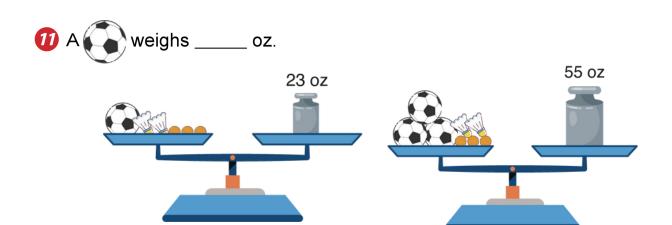
The length of the pencil is ____ cm.

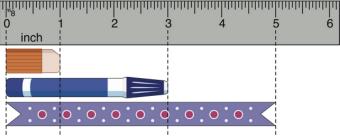



7 The length of the pencil is ____ cm.

The length of the marker is ____ cm.

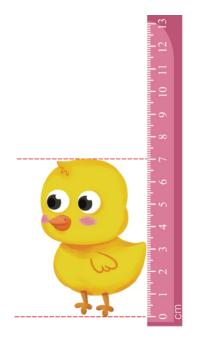



The length of this pencil is ____ cm.



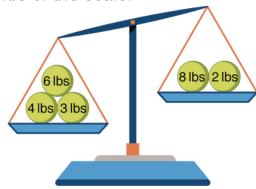
This pencil is ____ cm long.

😰 Observe the figures below and answer the following questions.

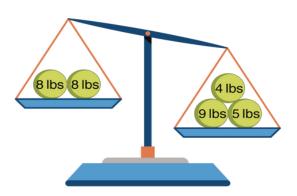

The ribbon is _____ inches long.

The eraser is _____ inch long.

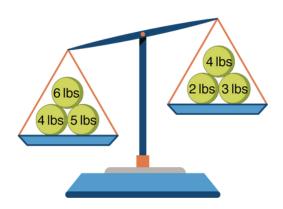
The marker is _____ inches long.



13 The height of this little chick is ____ cm.


The three scales are off-balanced. Add weights to each of the scales so that scales can be balanced.

(1) Add _____ lbs to the ____ (left/right) side of the scale.



(2) Add _____ lbs to the ____ (left/right) side of the scale.

(3) Add _____ lbs to the ____ (left/right) side of the scale.

Time and Clock

Fill in the blanks.

1 hour later, it will be 10 minutes ago, it was

15 minutes later, it will be ____: ___

What time does each of the clocks show?

3 Read the clock!

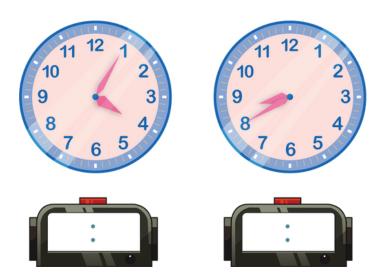
Let's read the clocks together! (1)

A. 12:05

B. 12:25

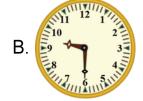
C. 5:00

(2)



A. 12:50

B. 1:50

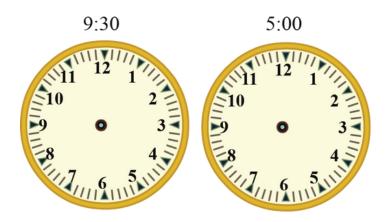

C. 1:10

6 Read clocks!

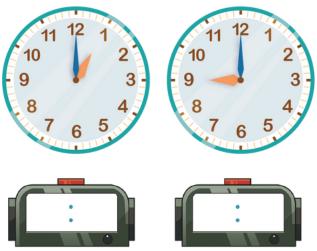
6 Which of the following is showing time of two hours after 7:30?

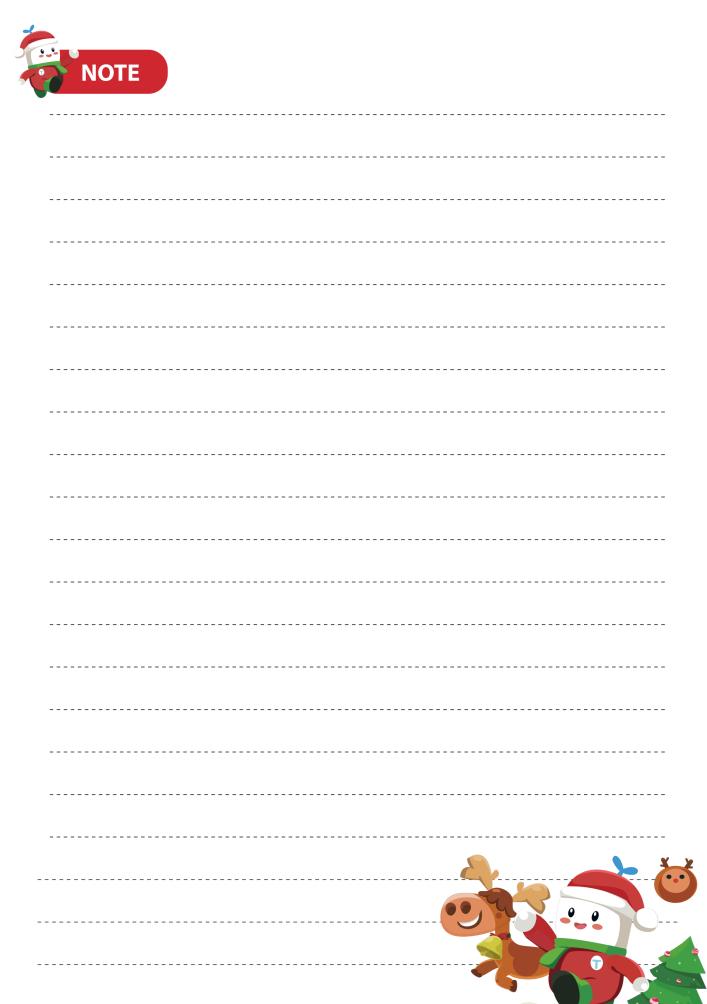
What time does the clock show?

A. 1:00


B. 12:00

C. 1:30


D. 12:30


Oraw the missing hands for each clock below.

What time does each of the clocks show?

Advanced Math

Number and Operations

Addition and Subtraction Strategies

$$100 - 28 - 32 =$$
_____.

Calculate:

$$89 - 39 + 44 =$$

(1)
$$164 - 59 - 41 = 164 - (59 _____41)$$

(2)
$$289 - 47 - 53 = 289 - (47 _____ 53)$$

Calculate in an easy way.

(1)
$$28 + 17 + 72 =$$
_____.

$$78 + 43 + 12 =$$
_____.

6 Calculate:

$$(1) 365 - (65 + 50) = \underline{\hspace{1cm}}.$$

$$241 - (68 + 41) =$$
_____.

(2)
$$94 - (24 + 37) =$$
_____.

$$68 - 26 + 32 =$$

(1)
$$65 + 42 + 5 =$$
_____.

$$(2) 25 + 58 + 25 = \underline{\hspace{1cm}}.$$

$$(3) 75 + 59 + 25 = \underline{\hspace{1cm}}.$$

$$(1) 65 + 34 - 25 = \underline{\hspace{1cm}}.$$

$$27 - 30 + 23 =$$
_____.

$$(1) 78 - (18 + 46) =$$
_____.

$$(2) 81 - (31 + 25) = \underline{\hspace{1cm}}.$$

$$(3) 149 - (28 + 79) = \underline{\hspace{1cm}}.$$

p Find an easier way to calculate:

(1)
$$9 + 2 + 1 =$$

(2)
$$18 + 8 - 8 =$$

$$(3) 37 + 28 - 17 = \underline{\hspace{1cm}}$$

$$(4) 29 + 48 - 8 + 1 = \underline{\hspace{1cm}}$$

$$(1) 221 - 36 - 64 = \underline{\hspace{1cm}}.$$

$$(2) 173 - 72 - 28 = \underline{\hspace{1cm}}.$$

$$(3) 139 - 17 - 83 = \underline{\hspace{1cm}}.$$

• A

Add or remove parentheses to make these calculations easier.

(1)
$$78 - 46 - 24 =$$
_____.

$$(2) 68 - (18 + 14) = \underline{\hspace{1cm}}.$$

15 Find an easier way to calculate:

$$(1) 7 + 2 + 3 = \underline{\hspace{1cm}}$$

(2)
$$16 + 6 - 6 =$$

$$(3) 54 + 28 - 24 = \underline{\hspace{1cm}}$$

$$(4) 27 + 36 - 16 + 3 = \underline{\hspace{1cm}}$$

$$79 - 32 - 29 =$$

17 Add or remove parentheses to make these calculations easier.

(1)
$$15 + 32 + 28 =$$
_____.

$$(2) 93 - (63 - 19) = \underline{\hspace{1cm}}.$$

78 Fill in the blanks with "+" or "-".

(1)
$$221 - 46 - 54 = 221 - (46 ____ 54)$$

(2)
$$374 - 83 - 17 = 374 - (83 _____ 17)$$

(1)
$$38 + 15 + 62 =$$
_____.

(2)
$$12 + 26 + 58 =$$
_____.

21 Calculate in an easy way.

(1)
$$17 + (13 + 29) =$$
_____.

$$36 + (24 - 19) =$$
_____.

(2)
$$44 - (24 - 19) =$$
_____.

$$46 - (16 + 18) =$$
_____.

(3)
$$447 - (36 + 17) =$$
_____.

Addition and Subtraction within 1000

Add using column addition:

$$(1) 281 + 13 = \underline{\hspace{1cm}}$$

(2)
$$61 + 228 =$$

Add and subtract using column addition and column subtraction:

$$(1) 77 + 86 = \underline{\hspace{1cm}}$$

$$(2) 254 - 53 = \underline{\hspace{1cm}}$$

(3)
$$378 + 564 =$$

3 Solve the following questions using column addition.

Subtract using column subtraction:

6 Add using column addition:

$$(3) 439 + 143 = \underline{\hspace{1cm}}$$

8 Calculate using column addition: 326 + 588

$$(1)72 + 29 =$$

$$(2) 69 + 27 =$$

$$(3) 225 + 56 =$$

$$(4) 556 + 276 =$$

Calculate using column subtraction: 417 - 223

(1)
$$88 + 7 =$$
_____.

 \bigcirc Do you know how to solve 574-390 using column subtraction?

13 Calculate: 694 + 67 = _____.

$$(2) 41 + 262 = \underline{\hspace{1cm}}$$

15 Do you know how to solve 806 + 95 using column addition?

16 Calculate: 353 - 287 =_____.

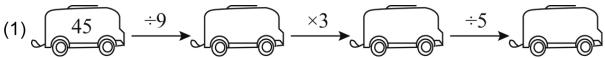
Add using column addition:

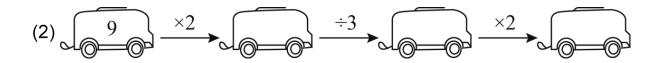
Multiplication and Division Calculation

(1)
$$5 \times 3 =$$
_____.

(2)
$$6 \times 5 =$$
_____.

(3)
$$9 \times 3 =$$
_____.

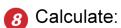

2 There are 5 groups of people playing games, and in each group there are 7 people. There are _____ people playing games


5 girls share 40 pieces of candy equally. How many pieces of candy does each girl get?

(3)
$$28 \div 4 =$$

(4)
$$9 \div 3 =$$

5 Fill in the blanks.



$$(3) \underbrace{\begin{array}{c} 40 \\ \hline \end{array}} \stackrel{\div 5}{\longrightarrow} \underbrace{\begin{array}{c} \div 2 \\ \hline \end{array}} \stackrel{\times 6}{\longrightarrow} \underbrace{\begin{array}{c} \times 6 \\ \hline \end{array}}$$

A teacher took 7 children to watch a movie. All the tickets cost \$72. How much is each movie ticket? _____ dollars.

(1)
$$54 \div 6 =$$
_____.

(2)
$$6 \times 8 =$$
_____.

(3)
$$12 \div 2 =$$
_____.

(4)
$$40 \div 5 =$$
_____.

(5)
$$6 \times 3 =$$
_____.

$$= \div 9 = 7$$

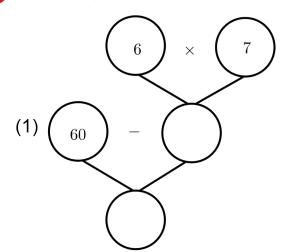
70 Fill in the blanks.

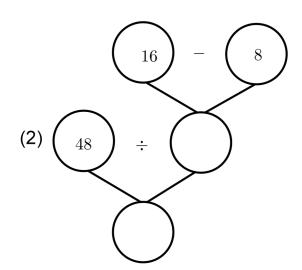
$$= 48$$

$$_{---}$$
 ×8 = 24

Debby has 15 fish. She puts 3 fish in each fish tank. How many fish tanks does she need?

(1)
$$12 \div 6 =$$
_____.


(2)
$$9 \times 4 =$$
_____.


(3)
$$30 \div 5 =$$
_____.

(4)
$$48 \div 6 =$$
_____.

(5)
$$5 \times 5 =$$
_____.

13 Observing the pictures below, fill in the blanks.

(1)
$$22 \div 3 = R$$

(2)
$$34 \div 4 = \underline{\qquad} R \underline{\qquad}$$

(3)
$$42 \div 5 = R$$

(4)
$$68 \div 9 =$$
______ R _____

(2)
$$4 \times 9 =$$

(3)
$$16 \div 4 =$$

(4)
$$0 \div 8 =$$

(5)
$$6 \times 8 =$$

(1)
$$8 \div 4 =$$
_____.

(2)
$$5 \times 5 =$$
_____.

(3)
$$9 \div 3 =$$
_____.

(4)
$$63 \div 7 =$$
_____.

(5)
$$3 \times 8 =$$
_____.

A hamburger costs 4 dollars. Petra has 20 dollars. She can buy _____hamburgers of the same kind.

Jenny bought 8 T-shirts. Each T-shirt costs 5 dollars. How much did she spend?

(1)
$$72 \div 8 =$$
______.

(2)
$$6 \times 7 =$$
_____.

(3)
$$16 \div 4 =$$
_____.

(4)
$$36 \div 6 =$$
_____.

(5)
$$9 \times 5 =$$
_____.

Calculate:
$$(1) \ 8 \div 8 =$$

(2)
$$9 \times 5 =$$

(3)
$$42 \div 6 =$$

(4)
$$49 \div 7 =$$

(5)
$$9 \times 8 =$$

22 Observing the pictures, write the multiplication and division equations.

23 There are 3 teams. Each team has 7 girls. There are _____ girls.

(1)
$$(1) 7 \times 9 =$$
_____.

(2)
$$9 \times 7 =$$
_____.

(3)
$$63 \div 7 =$$
_____.

$$(4) 63 \div 9 =$$
_____.

(2) (1)
$$35 \div 5 =$$
_____.

(2)
$$36 \div 4 =$$
_____.

$$(3) 49 \div 7 =$$
_____.

$$(4) 54 \div 9 =$$
_____.

21 boys are divided into some teams. There are 7 boys in each team. There are _____ teams.

26 There are 4 eggs on each plate. How many eggs are there on 7 plates?

(1)
$$7 \times 6 =$$
_____.

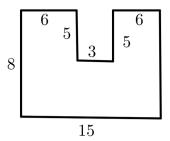
$$4 \div 2 =$$
_____.

(3)
$$7 \times 3 =$$
_____.

$$6 \div 2 =$$
_____.

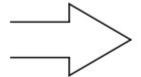
(4)
$$4 \times 5 =$$
_____.

¥

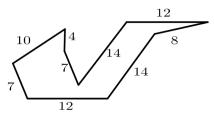


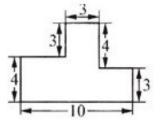
Geometry

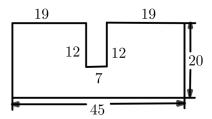
Understand the Perimeter


 $oldsymbol{n}$ The perimeter of the figure below is $___$.

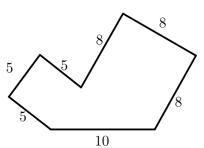
Which of the following figures does not have a perimeter?



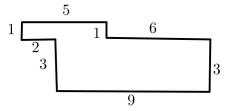


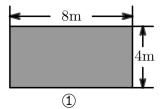

The perimeter of the figure below is _____. (unit: cm)

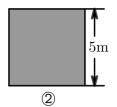
The perimeter of the figure below is _____.



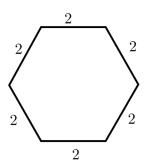
5 The perimeter of the figure below is _____.



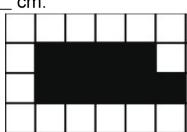

6 The perimeter of the figure below is _____ . (unit: cm)



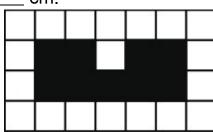
The perimeter of the figure below is _____ . (unit: cm)



8 Fnd the perimeter of the shapes below!

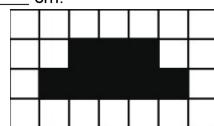


The perimeter of the figure below is _____.

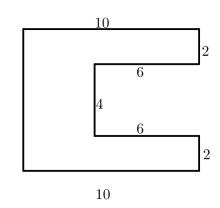


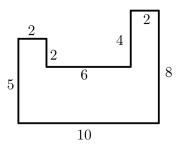
The following shapes are made by identical squares with a side length of 1 cm. Find the perimeter of each shaded part.

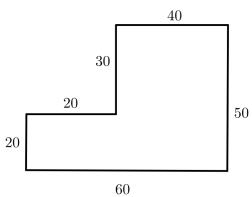
(1) The perimeter is ____ cm.



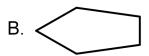
(2) The perimeter is ____ cm.



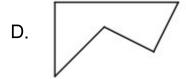

(3) The perimeter is ____ cm.


The perimeter of the figure below is _____.

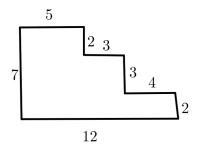
The perimeter of the figure below is _____ . (unit: cm)

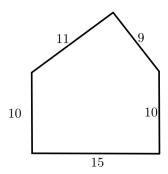


13 The perimeter of the figure below is _____.

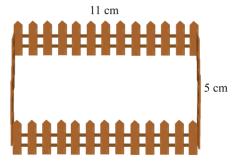


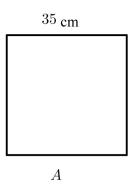
Which of the following figures does not have a perimeter?



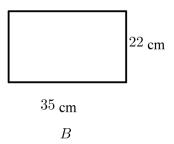


The perimeter of the figure below is _____.


 ${\color{red} {\it 16}}$ The perimeter of the figure below is _____ . (unit: cm)

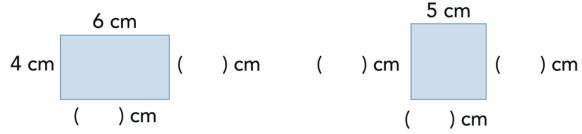


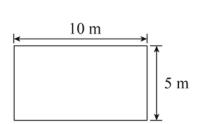
The Perimeter of Rectangle and Square

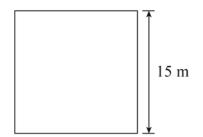

11 cm and the width of it is 5 cm. What is the perimeter of the fence?

- Fill in the blanks.
 - (1) A is a square. What is the perimeter of shape A?

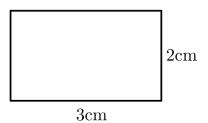
(2) B is a rectangle. What is the perimeter of shape B?




The perimeter of a rectangular window is 40 inches, and the length of this rectangular window is 12 inches. The width is _____ inches.


4 There is a square playground with a side length of 200 m in Think Academy. Tom runs three laps around the playground. How far does he run in total?

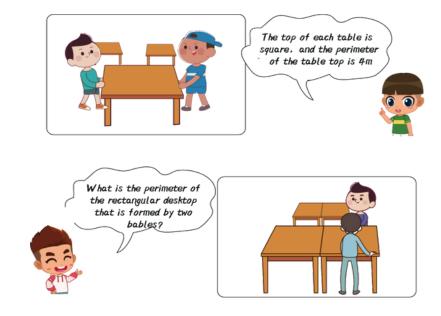
Fill the blanks and work out the perimeters of the rectangle and square.



6 As shown in the figures below, the perimeter of the rectangle is _____ m. The perimeter of the square is _____ m.

Which of the following ways to calculate the rectangle is wrong?

A.
$$3 \times 2 \times 2$$


B.
$$(3 + 2) \times 2$$

A.
$$3 \times 2 \times 2$$
 B. $(3+2) \times 2$ C. $3 \times 2 + 2 \times 2$ D. $3 + 2 + 3 + 2$

D.
$$3 + 2 + 3 + 2$$

Students are decorating the classroom for an event.

Tina wraps the tape of 64 cm around two squares of the same size separately. What is the side length of each square?

One side of a rectangle is 8 cm long, while the other is half as long. A square has the same perimeter as the rectangle. What is the side length of the square?

A. 3 cm

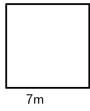
B. 4 cm

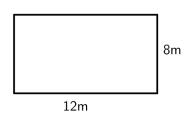
C. 6 cm

D. 12 cm

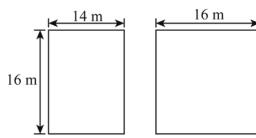
 $rac{10}{2}$ There is a rectangular garden with a perimeter of 80 meters and a width of 10 meters. The length of this garden is _____ meters.

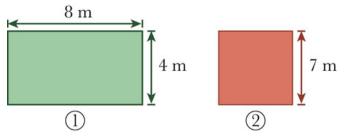
The perimeter of the rectangle is _____ cm. The perimeter of the square is ____ cm.


 8 cm
 5 cm


 5 cm
 5 cm

Perimeter of the square is _____ m. Perimeter of the rectangle is ____ m.

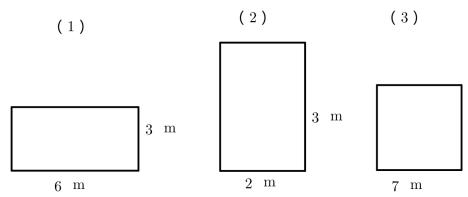



There is a rectangular tile with a perimeter of 60 inches and a length of 20 inches. The width of this tile is ____ inch(es).

As shown in the figures below, the perimeter of the rectangle is _____ m.

The perimeter of the square is ____ m.

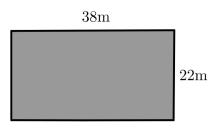
10 is a rectangle and 2 is a square. Find the perimeters of the two shapes.

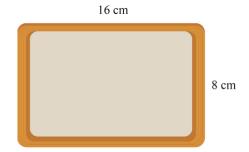

There is a rectangular playground with a length of 230 m and a width of 170 m in Think Academy. Candy runs two laps around the playground. How far does she run in total?

The length of a rectangle is 23 cm. Its width is 3 cm less than its length. The perimeter of this rectangle is ____ cm.



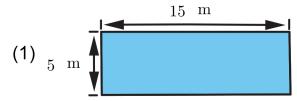
(P) Alison uses a rope of 36 cm to make a square. What is the side length of this square?

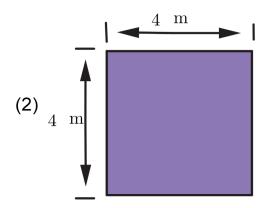

Find the perimeters of the shapes below.


There is a rectangular garden with a length of 380 inches and a width of 120 inches on campus. Betty runs 3 laps around the garden. How far does she run?

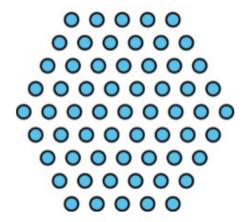
22 What is the perimeter of this rectangle?

Amy wants to use some wood sticks to make a rectangular photo frame. The length of the frame is 16 cm and the width is 8 cm. How many centimeters of wood sticks does Amy need?




There is a rectangular playground with a length of 260 m and a width of 140 m on campus. David runs 4 laps around the playground. How far does he run?

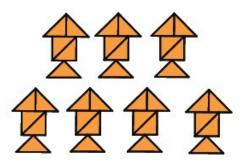
25 Find the perimeter of the shapes below.



If the perimeter of a small square is 16 centimetres and the perimeter of a large square is 80 centimetres, what is the difference between the side lengths of the small square and the large square in centimetres?

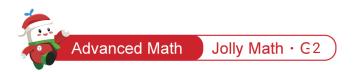
Counting Plane Shapes

How many circles are there in the figure?



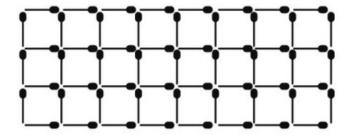
How many line segments are there in total?

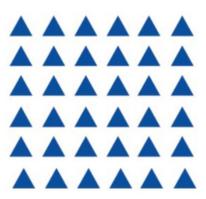
3 How many small triangles of the same size are there in the figure?

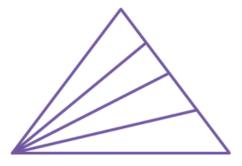


4 How many rectangles are there?

There are ____ rectangles in total.


6 How many wooden sticks are there in the figure?

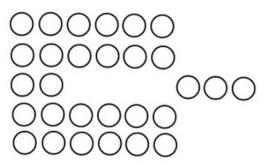

How many line segments are there in total?


B How many matchsticks are there in the figure?

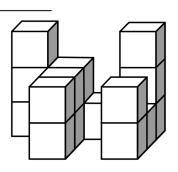
Mow many triangles are there in the figure?

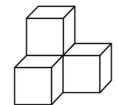
- To Count the following shapes:
 - (1) There are in total () triangles.

(2) There are in total () rectangles.

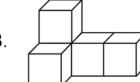


How many gifts are there in the figure?

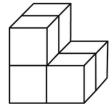

13 How many circles are there in the figure?

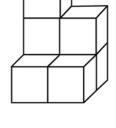

Counting Cubes

How many cubes are used to build the figure below? _



Which of the following figures is composed of six cubes?


Α

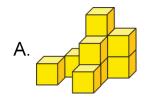

В.

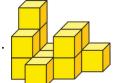


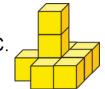
 \subset

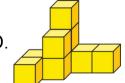


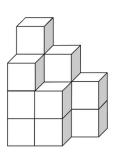
D.


There are ____ cubes that cannot be seen.

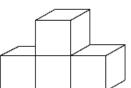



🛂 Help Nina figuring out how many cubes are used to build the figure below. ____

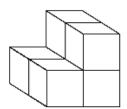

6 Which of the following figures is built with the same number of cubes as that of the figure below? () .

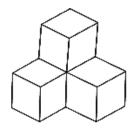


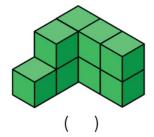
D.

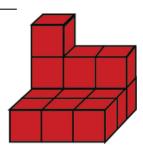


6 There are ____ cubes that cannot be seen.

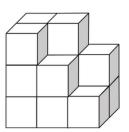



How many cubes are used to build each of the figures as shown below?

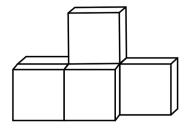




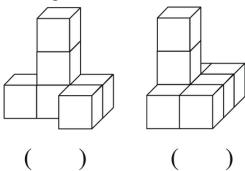
How many cubes are used to build the figure below?

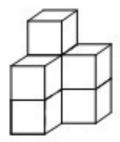


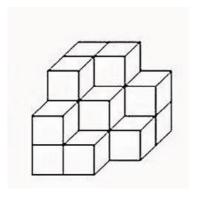
Mow many cubes are used to build the figure below? _____

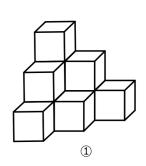


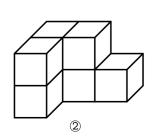
70 There are ____ cubes that cannot be seen.

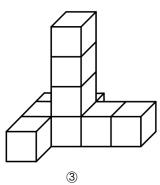



____ cubes are used to build the figure below.

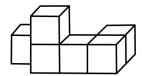

12 How many cubes were used to build each of the figures shown below?

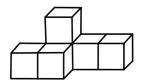

____ cubes are used to build the figure.



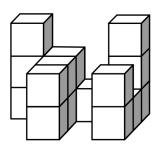

7 There are ____ cubes in total.

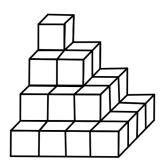
15 How many cubes are used to build the figure below? _____

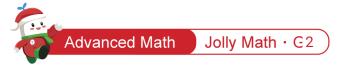


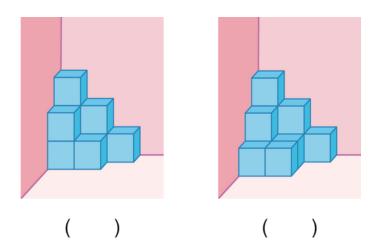


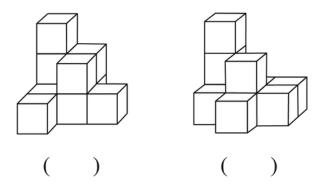
number of cubes


16 How many cubes are used to build each of the figures as shown below?



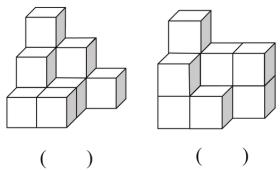

How many cubes are used to build the figure below?

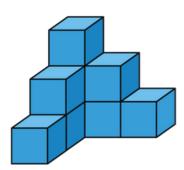

18 How many cubes are used to build the figure below?



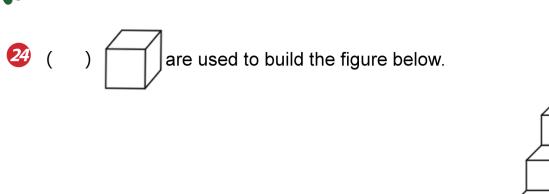
19 How many cubes were used to build each of the figures shown below?


20 How many cubes were used to build each of the figures shown below?



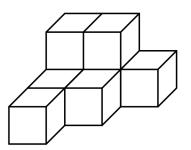

The figures are built of _____, ___, and ____ cubes, respectively.

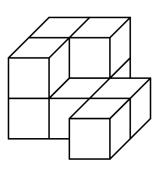

How many cubes were used to build each of the figures shown below?



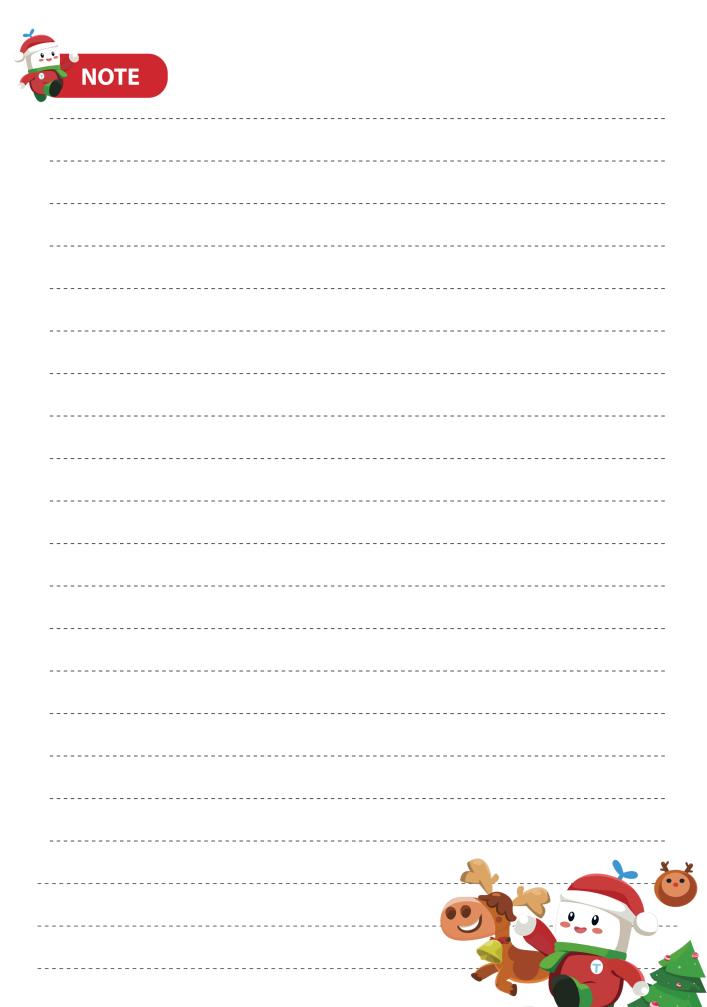
23 How many cubes are used to build the figure below? _____

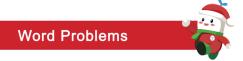





A. 6 B. 8

C. 10


25 How many cubes are used to build each of the figures as shown below?



Multiplication and Division Problems

1	Observe	the	pictures	below.	Fill	in	the	blanks	with	the	appropriate
	numbers and make the expressions true.										

				-				
(1)								

There are _____ apples in total. If we divide them equally among 2 plates, there will be ____ apples on each plate. ____ ÷ ___ = ___ .

There are ____ apples in total. If we put 4 apples on each plate, we need ____ plates in total. ___ ; ___ = ___ .

There are	_ pieces of candy in total. If we divide them equally
among 3 children	, each child can get pieces of candy.
÷ =	·
There are	pieces of candy in total. If we give each child 6 pieces
of candy as a gift	children can get gifts.
÷ =	·

- Count the number.
 - (1) How many stars are there in total?

Use addition to find the answer:

Use multiplication to find the answer:

(2) How many smiling faces are there in total?

Use addition to find the answer:

Use multiplication to find the answer:

Bob eats 2 apples each day. How many apples does he eat in a week? A. 8

C. 12 B. 10 D. 14

 $m{q}$ Mr.Monkey eats 42 peaches in 7 days and he eats the same amount of peaches everyday. How many peaches does Mr. Monkey eat in each day? C. 6 A. 2 B. 4 D. 14

One pineapple can make two pineapple cakes. How many pineapples do you need to make 10 pineapple cakes?

6	Mike	reads	10	pages	before	going	to	bed	every	day.	Не	has	read	100
	pages	s. How	ma	ny day	s has M	1ike rea	ad?	•						

A. 1

B. 5

C. 10

D. 20

Three eggs can make 2 packets of biscuits. How many eggs do you need to make 12 packets of biscuits?

June reads 8 pages before going to bed every day. She has read 72 pages. How many days has June read?

A. 7

B. 8

C. 9

D. 10

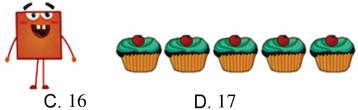
Amy and her five friends have breakfast together. Each of them eats two eggs this morning. How many eggs do they eat in total?

10 30 students participate in an activity. Every 6 students can be divided into a group. How many groups can they be divided into?

Split Number Problems

The fruit store buys in 12 apples for sale and the staff wants to divide those apples into two groups. Each group has at least 1 apple and every group has different number of apples. If every apple is the same, how many different ways are there for the staff to divide?

2 Andrew got 20 points in a math competition, and Jack got 18 more points than Andrew. How many points did Jack get?

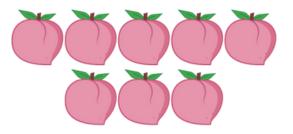

3 How many ways can you divide six cookies into 3 boxes? (Each box has at least 1 cookie.)

Maddy has 10 cupcakes and she wants to divide them into two groups. Each group has at least 1 cupcake and every group has different number of cupcakes. How many different ways are there for Maddy to divide?

Mr. Square ate 12 cakes and there are 5 cakes left. How many cakes are there in the beginning?

B. 12

A. 11


In how many ways can you divide 4 apples into three different plates? (Each plate has at least one apple and there is no different between plates.) _____

Justin's mom bought some cupcakes. After mom and Justin each ate two cupcakes, there were 18 cupcakes left. Originally, mom bought _____ cupcakes.

Aimee ate 3 peaches and there are 8 peaches left, how many peaches are there in the beginning?

Lucy's mother received ten carnations on Mother's Day and she wants to divide those flowers into three same vases. Each vase has at lesat 1 carnation and each group has different number of carnations. How many different ways are there for mom to divide?

Interval Problems

1	Luna cuts a piece of	wood 2 ti	mes in	the s	ame	way a	as show	n k	pelow	and	it
	is cut into	sections.	If she	need	ls to	cut a	piece	of \	wood	into	7
	sections in the same	way, she	needs	to cu	ut	tir	nes.				

2 Sophie needs to cut a piece of string 6 times to cut it into _____ sections, and she needs to cut a piece of string _____ times to cut it into 10 sections. (The string cannot be folded or twisted.)

3 Lisa is lining up to buy cupcakes. She is the 19th in the line, and there are as many people in front of her as people behind her. There are _____ people in the line to buy cupcakes.

Lining Up Problems

Oandice is on her way to school. As she is waiting in line to get on the bus, there are 10 people in front of her and 3 people behind her. In total, how many people are there in the line?

A. 12

B. 13

C. 14

D. 15

Nate is standing in a line to get some food. Counting from the front, he is the 9th person in the line. Counting from the back, he is the 3th one. How many people are there lining up?

A. 10

B. 11

C. 12

D. 13

3 15 children line up to visit the science museum. There are 8 children behind Jessica. How many children are there in front of her?

② Sophie is waiting in a line to buy the tickets for the movie. There are 8 people in front of her, and 5 people behind her. In total, how many people are waiting in the line?

5 Yolan and Eve are standing in a line. There are 5 people in front of Yolan, and 2 people behind Eve. Eve is right behind Yolan (no one is between them). How many people are there in the line in total?

A. 6

B. 7

C. 8

D. 9

6 Some students are lining up at the cafeteria. Ellie is the third from the back and the seventh from the front. How many students are there lining up in total?

A. 9

B. 7

C. 8

D. 5

Maddy and Cassie are standing in a line. There are 2 people in front of Maddy, and 6 people behind Cassie. Cassie is right behind Maddy (no one is between them). How many people are there in the line in total?

A. 6

B. 7

C. 9

D. 10

8 Charles is driving his car and waiting in front of the red light. There are 4 cars in front of his car, and there are 8 cars behind his car. How many cars in total are waiting in front of the red light?

Wiki is in a line to get cupcakes. There are 7 people in front of her, and 11 people behind her. How many people are there in total?

D. 5

10	there are 7 peop		and 5 people beh	ne to get on the bus ind her. In total, how
	A. 8	B. 11	C. 12	D. 13
1	•	•		ong that there are 10 e are people
1 2		•		econd from the back, ire there lining up in

C. 6

B. 7

A. 8

13		unting from the ba		ne front, she is the 8 ⁿ . How many people
	A. 9	B. 10	C. 11	D. 12
14	_	_	•	d from the back, and e lining up in total? D. 5

There are some children standing in a line. Justin is the fourth from the left and the second from the right. There are ____ children in the line.

16	There are some children standing in a line. Amy is the fifth count	ing from
	the left and the third counting from the right. There are ch	ildren in
	the line.	

There are some children standing in a line. Tom is the sixth from the left and the third from the right. There are ____ children in the line.

- Cindy and Joe are standing in a line. There are 3 people in front of Cindy, and 3 people behind Joe. Joe is right behind Cindy (no one is between them). How many people are there in the line in total?
 - A. 6
- **B**. 7
- **C**. 8
- D. 9

19	10 students line	e up.	Sam is	the 1	fifth	from	left to	right.	He is the	t	:h
	from right to lef	ft.									

20 16 students line up. Sam is the eleventh from left to right. What's his number from right to left?

- Gab and Stuart are in a line. Gab is the third from the front, and Stuart is the sixth from the back. There are two people between them. How many people are there in the line in total?
 - **A**. 11
- B. 12
- **C**. 13
- D. 14

Nathen and Andy are in a line. Nathen is the second from the front, and Andy is the sixth from the back. There are two people between them. How many people are there in the line in total?

A. 10

B. 12

C. 13

D. 8

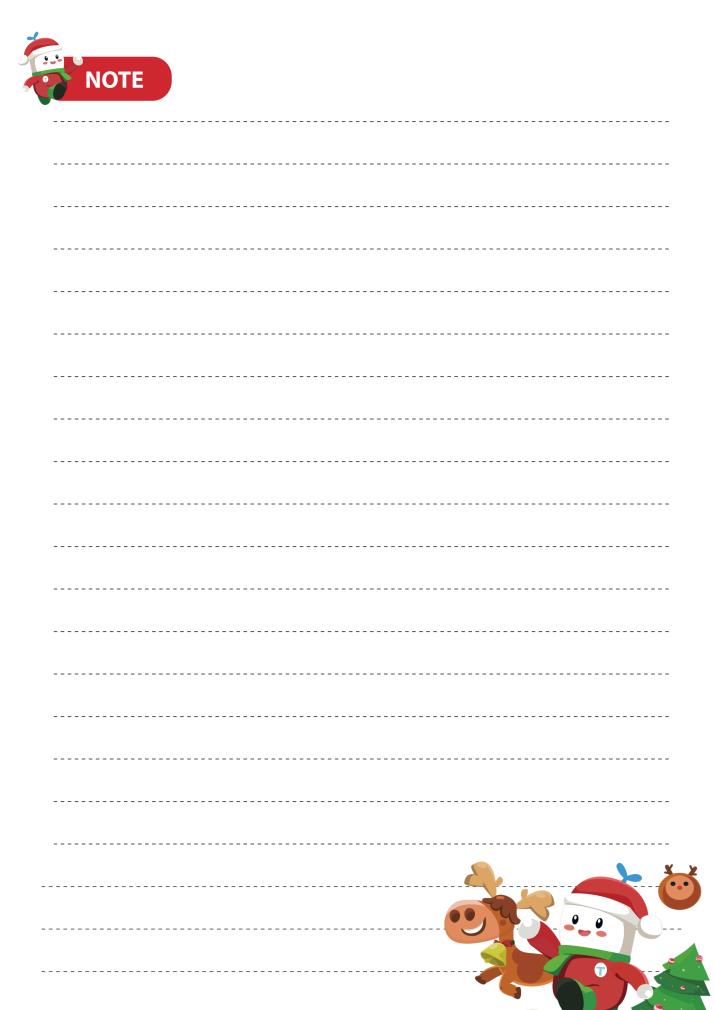
In a speech contest, Ricky was the seventh to give a speech. How many children are there in front of him?

Anna is lining up to get some ice-cream. Counting from the front, she is the 4th in the line. Counting from the back, she is the 7th. How many people are there lining up?

A. 9

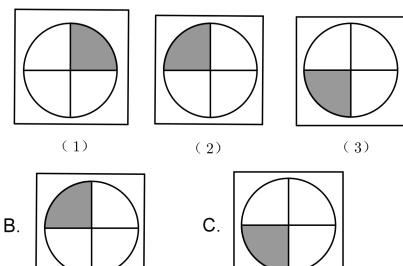
B. 10

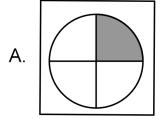
C. 11

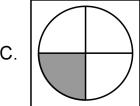

D. 12

25 18 children are lining up to visit the art museum. There are 9 children behind Kevin. How many children are there in front of him?

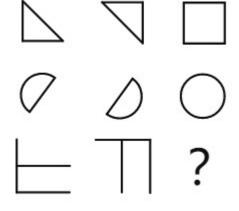
<u>*</u>

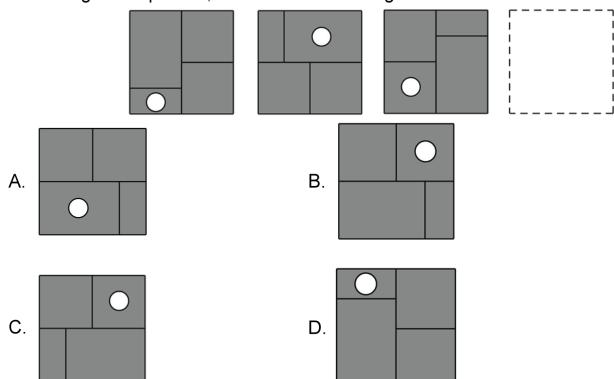


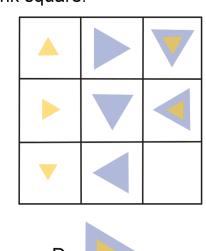

Logical Reasoning



Patterns in Shapes

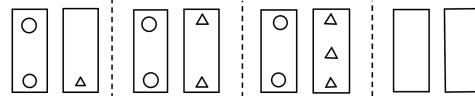

 $m{0}$ Observe the pattern in the shapes. What is the 6^{th} shape?

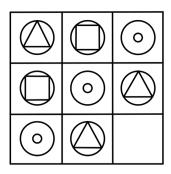



According to the pattern, draw the figure in the blank.

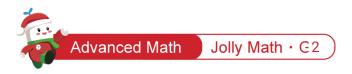
According to the pattern, which of the following should be in the blank?

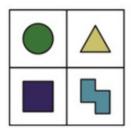
Find the pattern and choose the figure in the blank square.

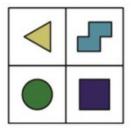


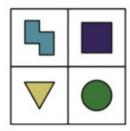


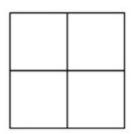
Second According to the pattern, choose the last figure.


6 Which is the right figure in the blank?

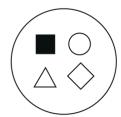

A. (

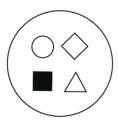

В.

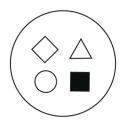

C. (o)

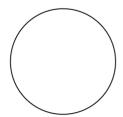


According to the pattern, draw the figures in the blanks.

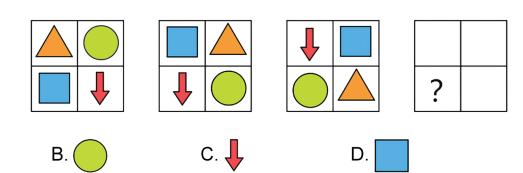


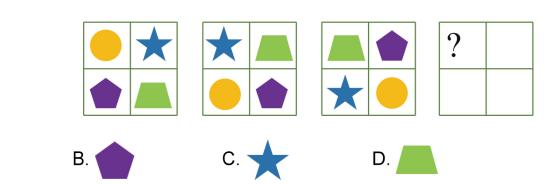


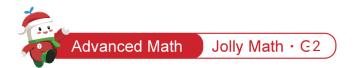




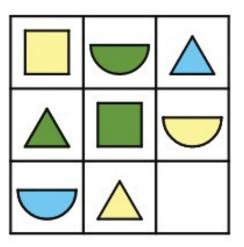
8 According to the pattern, complete the last figure.





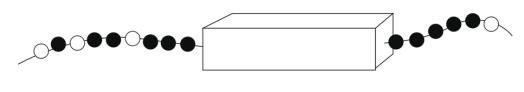


According to the pattern below, which shape should be in the square with the question mark in the next figure?

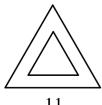


According to the pattern below, which shape should be in the blank with the question mark in the next figure?

According to the pattern, draw the figure in the blank.


12 According to the pattern, draw the figures in the blanks.

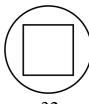
13 There are ____ white beads and ____ black beads in the box.

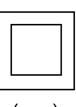

A. 2;4

B. 3;5

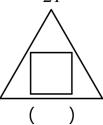
C. 2;2

D. 4;4


According to the pattern below, what's the number for the last two graphs?


11

31


32

21

A. 22; 12

B. 12; 22

C. 21; 22

D. 23; 32

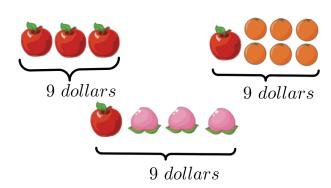
Equal and Balance

Fill in the blanks. (The same shape represents the same number, and different shapes represent different numbers.)

$$\triangle + \triangle = 18$$

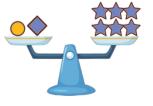
$$+ = 15$$

$$\wedge$$
 = ()


② Observe the scales. ____ apple(s) weigh the same as an orange.

3

4 Observe the scales. _____ strawberries weigh the same as a bunch of grapes.

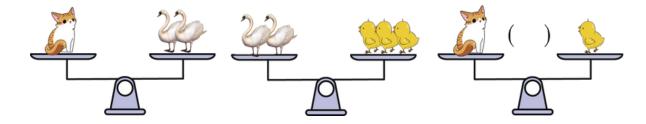

6 Observe the scales. ____ bananas weigh the same as an apple.

6 Observe the scales. Which of the following weigh the same as a diamond shape.

Fill in the blank with the appropriate number.

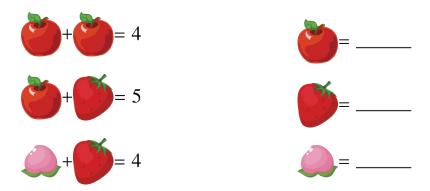
Observe the scales. _____ strawberries weigh the same as a bunch of grapes.

9 △= ○ ○

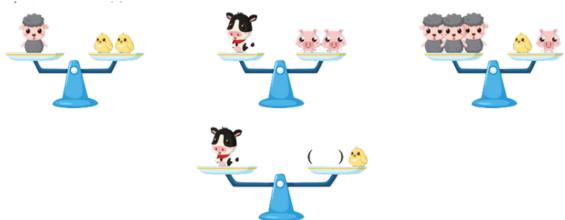

$$\triangle = \square \square \square$$


Fill in the blanks! (The same animal represents the same number, and the different animals represent different numbers.)

$$12 - 10 - 10 = 2$$

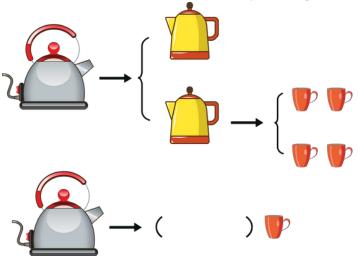

Find the number each animal represents below! (The same animals represent the same numbers, and different animals represent different numbers.)

Dbserve the scales. ____ chicks weigh the same as a cat.



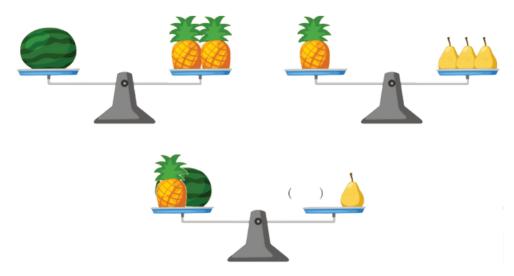
13

Fill in the blank with the appropriate number.



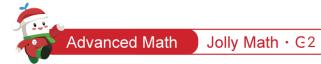
Logical Reasoning

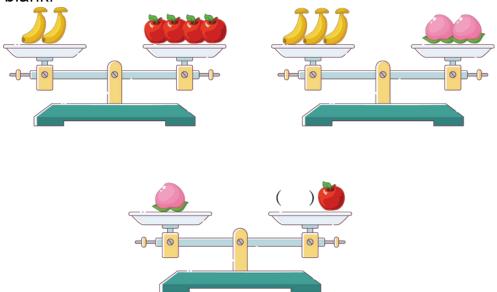
15 Observe the scales. ____ cups weigh the same as a kettle.



Fill in the blanks. (The same shape represents the same number, and different shapes represent different numbers.)

$$=$$
()


Fill in the blank with the appropriate number.


78 Fill in the blanks.

$$\blacksquare$$
 = (

$$(2) + = 8$$

How many apples weigh the same as a peach? Fill the number in the blank.

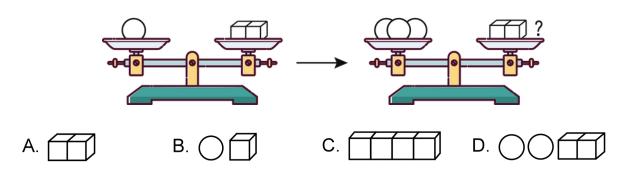
Fill in the blanks. (The same shape represents the same number, and different shapes represent different numbers.)

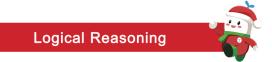
$$+ + + + + + = 14$$

$$=$$
 () $=$ () $=$ ()

21 Fill in the blanks.

应 Observe the scales. Which of the following weigh the same as a diamond shape?


- A. ♠♠♠ C. ♠♠ D. ●♠♠

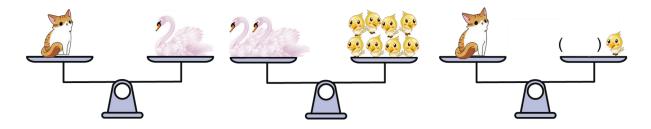

② Observe the scales. ____ bananas weigh the same as an apple.

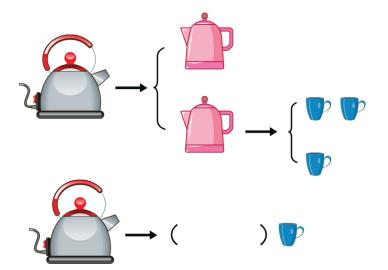
29 What should be put in "?" to keep balance?

25 1 banana = ____ green apples.

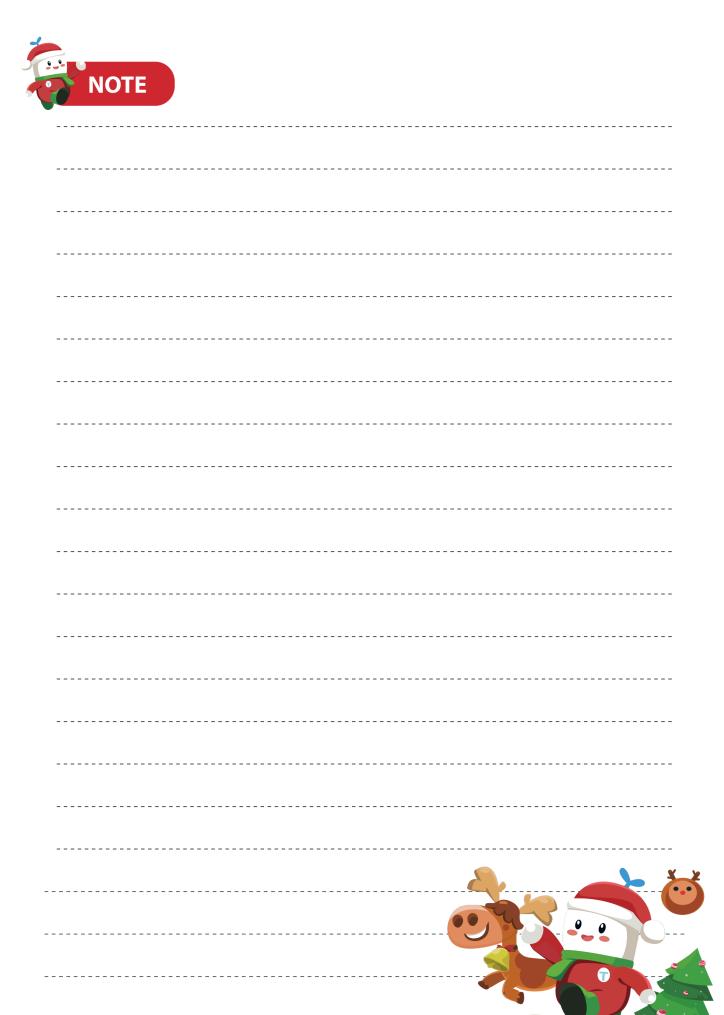


How many strawberries weigh the same as an apple? Fill the number in the blank. _____

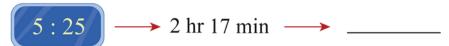




Observe the scales. ____ chicks weigh the same as a cat.


Observe the scales. ____ cups weigh the same as a kettle.

T	



Time and Clock

7 Fill in the blanks.

Fill in the blanks.

3 Daisy was invited to her friend's birthday party. Right now, it is 10:20 a.m.. She arrived at the party an hour and a half ago. The trip was 25 minutes long for Daisy to depart from her home toward the party.

(1) When did Daisy arrive at the party?

(2) When did Daisy depart toward the party?

The clock now shows the time when Bob arrives at the library. He left home two and a half hours ago. When did he leave home?

A. 8:30

B. 9:00

C.9:30

D. 10:00

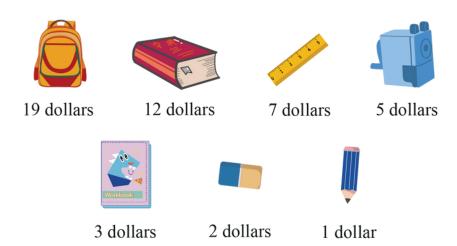
5 The clock shows the time now. 45 minutes later, the time will be _____.

- A. 7:45
- B. 8:00
- C.9:00
- D. 9:15

6 The clock shows the time now. 40 minutes later, the time will be _____

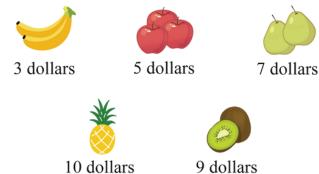
- A. 2:50
- B. 3:30
- C.4:10
- D. 5:10

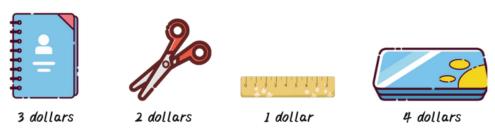
- Mark planned to visit his grandparents. Right now, it is 8:00. He arrived 2 hours and 30 minutes ago. The trip was 45 minutes long.
 - (1) What time did Mark arrive at his grandparents' home?


(2) What time did Mark depart toward his grandparents' home?

Money Calculation

1 Each bottle of coke costs 3 dollars in the supermarket and 4 dollars at McDonald's. Bob can buy _____ bottles of coke in the supermarket with 12 dollars and can buy _____ bottles of coke at McDonald's with 12 dollars.


Helen is shopping at a stationery. At most, how many items could she get with 18 dollars? (She can only buy one of each items.)



Jerry is going to buy some fruits at a fruit store. At most, how many kinds of fruits could he buy with 24 dollars at most? (He can only buy one kind of fruits once.)

Penny has 5 dollars, which two things can she buy? Then how much is left?

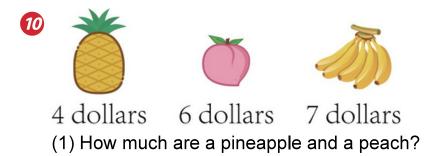
- **5** School needs to buy 6 desks, and each desk's full price is 12 dollars. Currently, there are two sale plans.
 - (1) Buy desks on full price, but buy 2 getting 1 free.
 - (2) Buy desks on a discounted price for 7 dollars each. Which sale plan is better?


A. (1)

6 Each bunch of roses costs 4 dollars in the market and 6 dollars at the flower shop. Alice can buy _____ bunches of roses in the market with 24 dollars and can buy _____ bunches of roses at the flower shop with 24 dollars.

Niko has 20 dollars and he wants to buy 3 bottles of water and 2 bread. Is his money enough? If his money is enough, how much is the change?

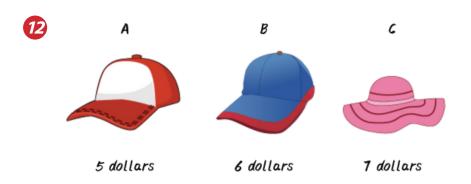
8 With 18 dollars, Lily wants to buy those three items. Is her money enough? If not, how much more does she need?



Calculate:

(1) How much does it cost to buy a candy and a pencil-box?

(2) How much does it cost to buy a pencil-box and a bar of chocolate.


(2) How much are a peach and a bunch of bananas?

11 Help Eddie figure out how much the bill takes.

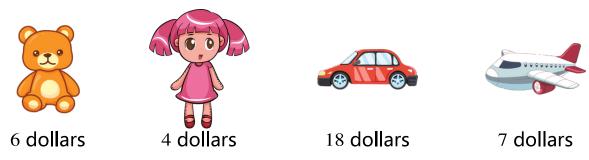
XX 23 dollars
XX 15 dollars
XX 36 dollars

(1) Mr. White bought two same hats and they cost 12 dollars. Which type of hat did he buy?

(2) Amy bought one type A hat and one type C hat. How much did she spend?

13 They have to pay ____ dollars.

(1) Tim has 27 dollars only, how much more does he need to buy a volleyball?


____ = ___ dollars

(2) After buying a bag, Nina still has 54 dollars. How much did she have in the beginning?

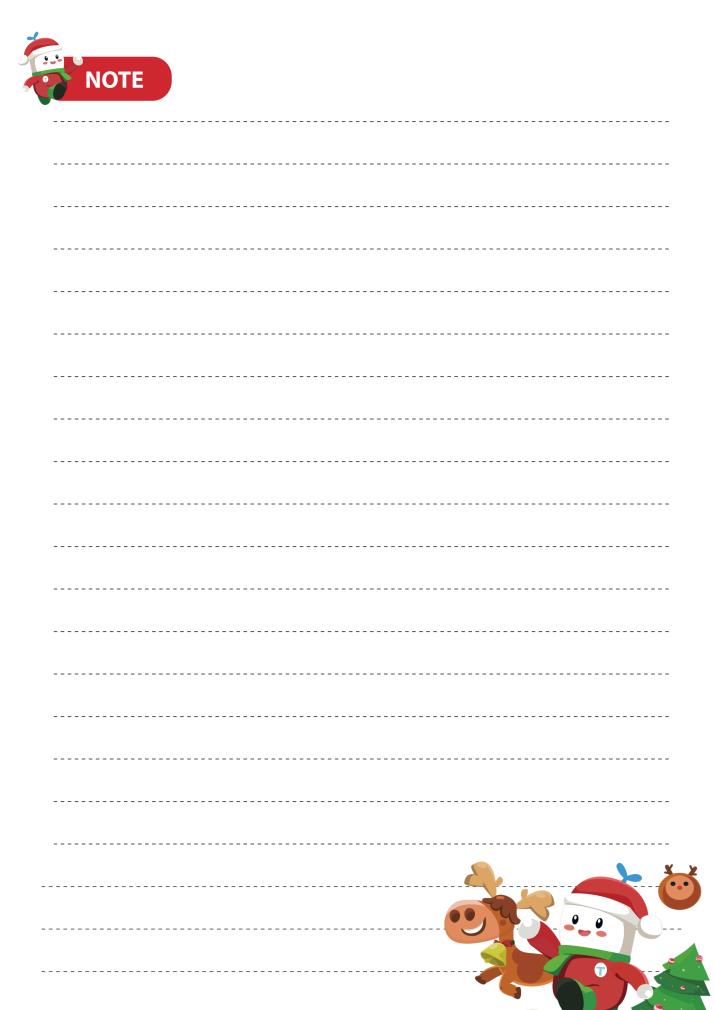
____ = ___ dollars

- (1) Lucy buys a teddy bear and a doll, how much does she need to pay?
- (2) Which is the most expensive toy? Which is the cheapest one? How much is the difference?

The amusement park sells 5 types of balloons at the following prices.

- (1) How much do one and one cost?
- (2) How much cheaper is than?

Lucy wants to buy the following textbooks with 35 dollars. Does she have enough money for all four kinds of textbook? If not, how much more does she need?


Mathematics 12 dollars

English 14 dollars

Science 8 dollars

Art 7 dollars

Crazy Math

MK Level 1–2

 $m{n}$ In a zoo, there are three monkeys. The monkeys are all younger than 5 years old. None of them has the same age, and all their ages are whole numbers. The product of their ages is 8. What is the sum of their ages?

A. 4

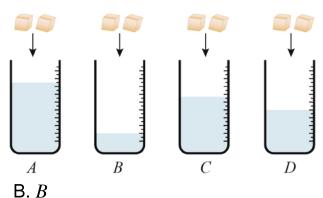
B. 6

C. 7

There are some kids exercising in the park. Little kangaroo takes a photo for half of the kids which is shown below. How many kids are there in the park?

A. 5

B. 6


C. 10

D. 12

3 Put 2 same cubes of sugar in each of the cups below. Which cup has the sweetest water?

D.D

- A. *A*
- **C**. *C*
- E. All are the same

- Lucas wrote some words in code. Different digits represent different letters and the same digit represents the same letter. For example, the word BALL was coded as 1233. One of the words below was coded as 49946758. Which one is the right word?
 - A. SCISSORS
- B. ALPHABET
- C. CHECKERS

- D. CHILDREN
- E. OPPOSITE

5 In an archery contest, Mira got 28 points on the first round, as shown in the left target below. On the second round, she got 12 points, as shown in the middle target. How many points did she get on the third round?

A. 16

B. 18

C. 20

D. 22

E. 24

6 Candy, Justin, David and Ivy were buying some apples together. Candy bought fewer apples than Ivy, and Justin bought fewer apples than Candy. Ivy was not the one who bought the most, but what she bought was more than that of two people. Who bought the least apples?

A. Candy

B. Justin

C. David

D. Ivy

E. Impossible to determine.

The figure below is the net of

. Which position should the

be?

		1	
+ 4	-	2	3
		4	

A. 1

B. 2

C. 3

D. 4

E. It is impossible to tell

(3) Candy lives on the third floor, and Lily lives in the same building but has to walk up three times as many stairs as Candy. There are no stairs to the entrance of the building. On which floor does Lily live? (Adapted from 2000 Math Kangaroo Problem, level3-4 Question #4)

A. on the second floor

B. on the third floor

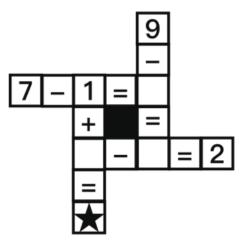
C. on the fourth floor

D. on the sixth floor

E. on the seventh floor

copyrighted material used with permission from Math Kangaroo in USA, NFP Inc.

Today, on January 10, 2022, Mike's cat is 15 days old. When was his cat born?

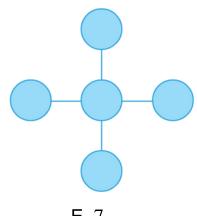

A. on January 1, 2022

B. on December 24, 2022D. on December 26, 2021

C. on December 25, 2021

E. on December 28, 2021

What number should replace the star shape so that all the calculations are completed correctly?


A. 3

B. 4

C. 5

D. 6

 \mathbf{m} The numbers 1, 2, 3, 6, and 7 are written in the circles of the cross below, so that the sum of the numbers in each line is equal to 11. Which number is written in the central circle?

A. 1

B. 2

C. 3

D. 6

E. 7

A snail falls down a well unfortunately in the morning. The well has a depth of 15 meters. The snail can climb up 3 meters during the day, but slides down 1 meter during the night. In how many days can the snail get out of the well?

A. 5

B. 6

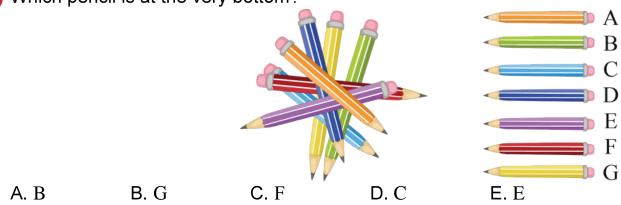
C. 7

D. 8

There are 18 trees on one side of a straight road. The first tree is at the start of the road, and the last tree is at the end of the road. The distance between each tree is 3 meters. How long is the road? (Ignore the thickness of the trees.)

A. 48 meters B. 51 meters C. 54 meters D. 55 meters E. 66 meters

Some students are standing in a line. Counting from the front of the line, Peter is the 19th student. Counting from the back of the line, Bill is the 28th student. Bill is the fourth person standing in front of Peter. How many students are standing in the line in total?


A. 32

B. 43

C. 42

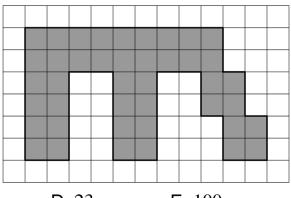
D. 33

15 Which pencil is at the very bottom?

6 A singing lesson lasts 50 minutes, and it started at 10:40. Lucy was late and came to class exactly half way through. What time did Lucy come to the class?

A. 11:30

B. 11:05


C. 11:25

D. 10:15

E. 9:50

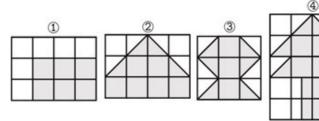
The side length of each small square is 1 in figure below. What is the perimeter of the shaded part?

- A. 42
- B. 50
- C. 84
- D. 23
- **E**. 100

The same fruit represents the same number, and different fruits represent different numbers. What number does the peach represent according to the equations below?

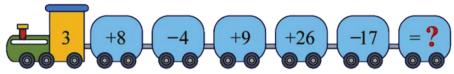
- **A.** 8
- B. 9
- **C.** 16
- D. 17
- E. 19

15 Which piece completes the picture?



E. Impossible to determine.

Which of the following figures has the largest shaded part?



- A. ①
- C. 3

E. Impossible to determine.

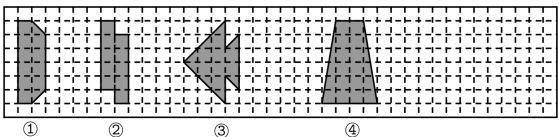
- B. ②
- D. 4

21 What number should be written on the last carriage?

- A. 35
- B. 25
- C. 42
- D. 15
- E. 22

John watches 3 episodes of cartoon, each 40 minutes long, from 1 P.M. After each episode, he will take a 10-minute break. When will he finish all 3 episodes?

A. 2:20 P.M.


B. 3:00 P.M.

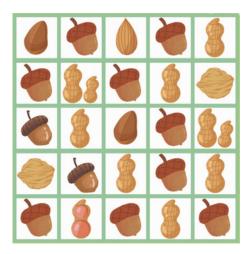
C. 3:10 P.M.

D. 3:20 P.M.

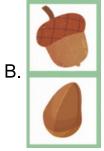
E. 3:30 P.M.

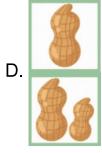
23 Which of the following figures has the largest shaded area?

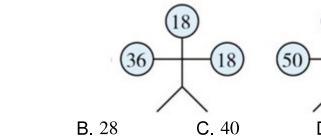
B. ②

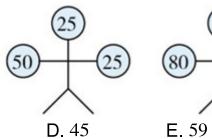

D. 4

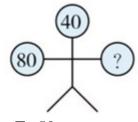
- A. ①
- C. ③
- E. They have the same area.


- Nick has 83 books and Steven has 140 books. Starting tomorrow, Nick will buy 8 books and Steven will buy 5 books every day. How many days later will they have the same number of books?
 - A. 100
- B. 19
- **C**. 32
- D. 20
- E. Never


25 Which of the following pieces we cannot find in the picture below?

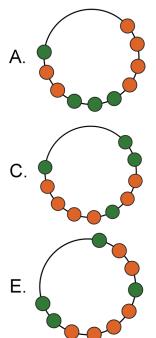


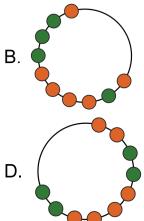



In G1 class, the number of girls is 13 more than that of boys. The number of boys is half the number of girls. How many students are there in the class?

- A. 26
- B. 30
- C. 33
- D. 39
- E. 40

What number needs to be written in the cell with the question mark?





Which of the following bracelets is different from others?

A barrel of oil weighs 18 kg (weight of the barrel and the oil). After half of the oil is used, the barrel of oil weighs 10 kg (weight of the barrel and the oil). How many kilograms does the oil weigh without the barrel originally?

A. 17

B. 15

C. 16

D. 14

James wants to take a bus to visit her grandfather. The bus arrives at the station every 30 minutes. James arrives at the bus station at 7:00 A.M., while the bus just leaved the station at 6:50 A.M. How long will James wait for the next bus?

A. 10 min

B. 15 min

C. 20 min

D. 25 min

E. 30 min

Mike writes the numbers 1 to 6 on the faces of a cube. The pictures below show the cube in three positions. Which number is on the face opposite the number 2?

A. 1

B. 2

C. 4

D. 3

Cathie and Dennis are lining up to buy donuts. Cathie is the 13th person counting from the front, and Dennis is the 14th person counting from the back. There are 6 people counting from Cathie to Dennis. Cathie is in front of Dennis. How many people are lining up?

A. 27

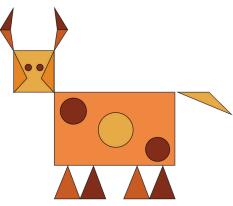
B. 33

C. 32

D. 31

E. 34

Gindy and Jack are good friends. The sum of their ages this year is 46. What was the sum of their ages 7 years ago?


A. 53

B. 60

C. 39

D. 32

Lisa uses some colored cards of different shapes to form a cattle as shown below. How many triangular cards can you find in the cattle?

A. 8

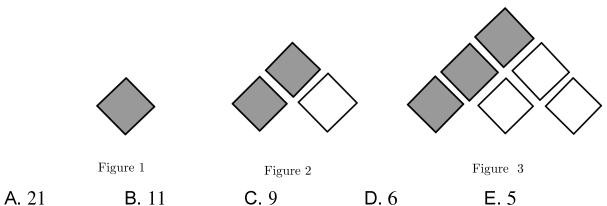
B. 9

C. 10

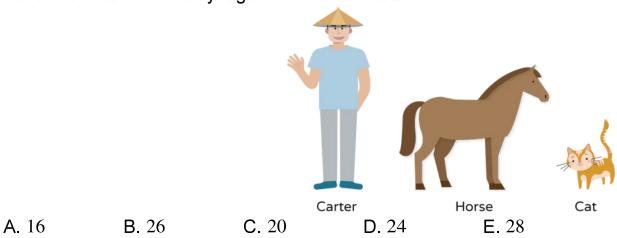
D. 11

E. 13

In two days, Jason walked 41 kilometers. On the second day, he walked 4 kilometers less than 4 times as far as he did on the first day. How many kilometers did he walk on the second day?


A. 26

B. 28


C. 30

D. 32

Observe and find the pattern below. What is the difference between the number of shaded squares and white squares in Figure 6?

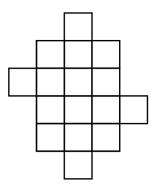
A carriage was driven by a horse and a carter, and there were two passengers in the carriage. Each passenger had one cage where there were two cats. How many legs were there in total?

Ella puts four kinds of fruits which are an apple, an orange, a grape and a pear in four cubbies as described:

The apple is right below the orange.

The grape is to the right of the orange.

What is in the bottom-right corner?


A. Pear

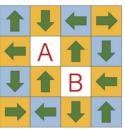
B. Orange

C. Grape

- D. Apple
- E. It is impossible to tell.

© Cut the shape below along the lines to get 4 identical pieces. What does each piece look like?

A. ____


В.

C. _____

E. |

 \bigcirc Observe the figure below and find the pattern. What should be put in square A and B, respectively?

В. 📦 📦

There are _____ rectangles in the grid in which the result is 24.

16 + 8	2 × 12	8 × 3
3 × 6	30 – 16	72 – 48

A. 6

B. 2

C. 3

D. 4

Cathie made a new friend, Victoria. She tries to find her birthday, and asks her:

"Were you born on May 14th, 2002?"

"Were you born on May 15^{th} , 2001?"

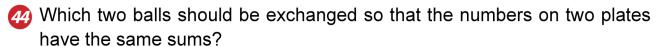
"Were you born on June 15^{th} , 2002?"

Each time exactly one of the day, the month, and the year is right.

When was Victoria born?

A. June 14th, 2002

B. May 15th, 2002

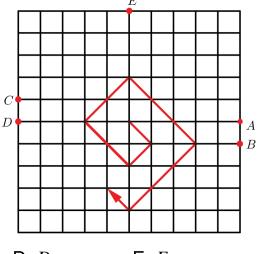

C. June 14th, 2001

D. May 14th, 2001

E. June 15th, 2001

Redhand and Greenhand produce 17 machine parts in total. The number of parts produced by Redhand is 1 more than three times that of the Greenhand. How many parts does Redhand produce?

- **A**. 18
- B. 13
- **C**. 9
- D. 6
- E. 4



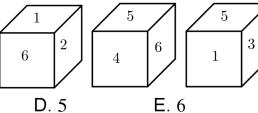
A. 3 and 6 B. 3 and 5 C. 1 and 7 D. 2 and 7 E. 1 and 6

- It is Friday today. Mia's birthday was ten days ago. On what day of the week was Mia's birthday?
 - A. Monday
- B. Tuesday
- C. Wednesday

- D. Thursday
- E. Friday

45 Jerry is in the center of the grids below, and he wants to get out from it following the pattern of the red path. Which point will be the exit for Jerry?

A.A

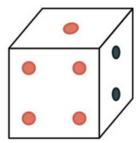

B. *B*

C. C

D. *D*

 $\mathsf{E}.\,E$

On each of six faces of a cube, there is one of six numbers: 1, 2, 3, 4, 5, and 6. On each face there is a different number. In the picture we can see the cube shown in three different positions. Which number is on the face opposite the face with 4?


A. 1

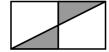
B. 2

C. 3

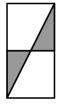
Joann wants to play with the die. She rolls the die 2 times as shown below.

Which number is on the opposite face of number 4?

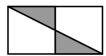
- A. 2
- B. 3
- **C**. 1
- D. 6
- E. 5

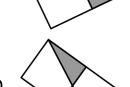

Lesi, Hilla, Daisy, Neil, and Timmons are climbing a mountain. Neil arrives at the top before Daisy and Timmons, and Timmons reaches the top right after Neil. There are two people arriving at the top after Lesi and before Daisy. We already know that Lesi is not the first one. Who is the first one reaching the top of the mountain?

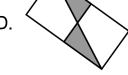
- A. Lesi
- B. Hilla
- C. Daisy
- D. Neil
- E. Timmons

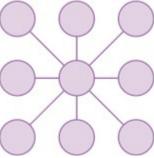


Which of the following figures is different from the other ones?




C.


E.



61 Fill the numbers 7, 9, 11, 13, 15, 17, 19, 21 and 23 into the circles below, so that the sum of the three numbers in each line is equal to 51. (Each number can be used only once.) What number is in the central circle?

A. 7

B. 13

C. 15

D. 21

What number should be in the blank with question mark?

Three pirates, Jack, Cooker, and Sia are dividing 50 coins. Cooker says: the coins I get are 6 more than Jack and 20 fewer than Sia. How many coins does Sia get?

A. 6

B. 12

C. 32

D. 30

Make a with $\frac{6}{1824}$. What is the number on the opposite face of "2"?

A. 6 B. 4 C. 2 D. 1 E. 7

Eddie had 72 apples. He divided all the apples equally among each of his friends. Which of the following was definitely not the number of his friends?

A. 3

B. 4

C. 19

D. 36

E. 9

There are 7 girls standing in a line. Then, some boys join the line and there are 3 boys standing between every two adjacent girls. How many boys are there?

A. 7

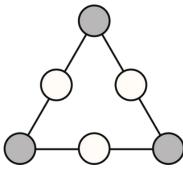
B. 6

C. 12

D. 18

Cecilia made 23 muffins. She decorated 13 muffins with chocolate and then 15 muffins with blueberries. How many muffins were decorated with both chocolate and blueberries at least?

A. 3


B. 4

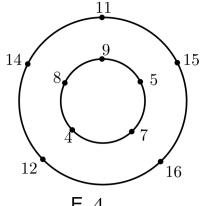
C. 5

D. 6

E. 7

Fill the numbers $1\sim6$ in the circles, so that the sum of three circles in each line is 12. What is the sum of numbers in the shaded circles?

A. 4


B. 6

C. 3

D. 10

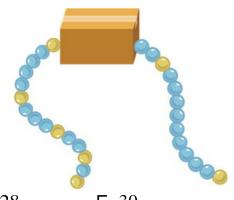
59 There is a special code lock with two rings that can be rotated clockwise or counterclockwise. When the difference between every outer number and inner number is the same, it will unlock. What is the inner number for 11 when the code lock unlocks?

A. 8

B. 9

C. 5


D. 7


E. 4

@ According to the pattern, what letters should be in the third row from left to right?

H	K	Q	Y
Y	H	K	Q
K	Q	Y	Н

A. H, K, Q, Y B. K, Q, H, Y C. Q, Y, H, K D. Q, K, H, Y E. Q, Y, K, H

A. 22

B. 24

C. 26

D. 28

E. 30

There are 8 cards with either a kangaroo or a koala on it. We can only switch two adjacent cards at each time. How many times at least are needed to make three koala cards together?

A. 3

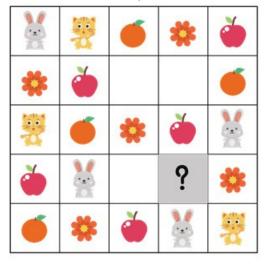
B. 4

C. 5

D. 6

. Each figure appears exactly once in every column and every row.

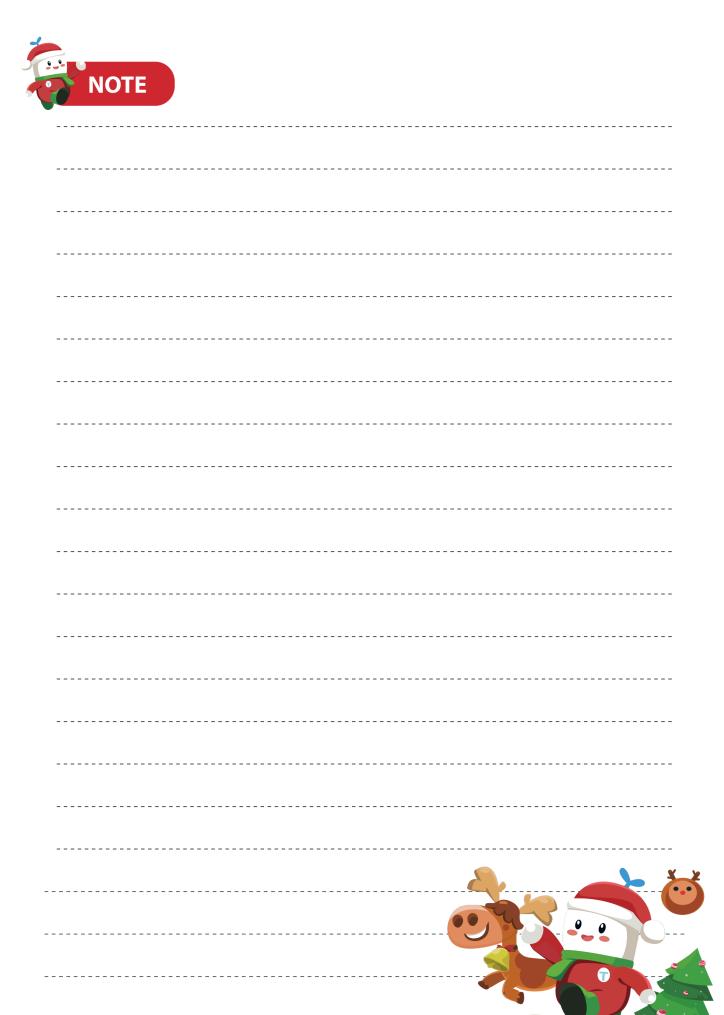
Which figure should Rose put in the cell with the question mark? (Adapted from 2018 Math Kangaroo Problem, level 3-4, Question #10)



Henry, Ola, Charles, and Jimmy had a running race. The person who ran the fastest won. Jimmy ran faster than Ola, and Charles ran slower than Henry. We know that Jimmy did not win the race. Who ran the fast?

A. Henry

B. Ola

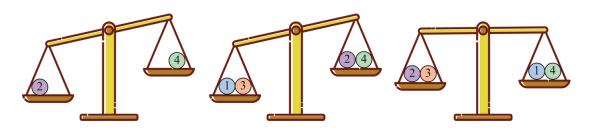

C. Charles

D. Jimmy

E. This cannot be determined

copyrighted material used with permission from Math Kangaroo in USA, NFP Inc.

Think Cup



The square with the question mark can be formed by _____ green triangles below.

- **A.** 4
- B. 6
- **C**. 8
- D. 10
- E. 12

Which ball is the heaviest?

- A. ①
- C. ③
- E. Impossible to determine
- B. ②
- D. ④

Summer has some nuts and wants to divide them equally to 5 kids. Everyone can get 7 nuts at most. How many nuts does Summer have at most?

A. 34

B. 35

C. 30

D. 39

E. 40

🔼 Nini and her puppy, Buni, are having a walk along a street with trees on one side. The distance between two adjacent trees is the same, and the width of trees can be ignored. Nini and Buni start walking from the first tree at the same time. After 12 minutes, Nini arrives at the 4th tree, and Buni arrives at the 7th tree. When Nini walks to the 16th tree, which tree does Buni arrive at?

A. The 31st tree. B. The 30th tree.

C. The 29th tree.

D. The 28th tree.

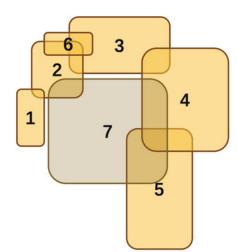
E. The 27th tree.

- **5** The largest one-digit number is _____ , and the least two-digit number is
 - A. 1;10
- B. 9; 10
- C. 9;99
- D. 10;9
- E. 10; 1

Which number is represented by the last carrot?

B. 6

C. 3


÷4

D. 1

- Qing made a collage of a blonde lady with only 7 cards as shown below. The cards are numbered 1 to 7 respectively on one side, and each card is marked with M, A, T, H, F, U, or N on the other side.
 - Qing left following clues below. Can you find the three-digit number represented by FUN?
 - (1) N overlaps with H and U.
 - (2) A overlaps with M, T, F, and U.
 - (3) *M* overlaps with only two cards.
 - (4) T overlaps with M, A, and H.
 - A. 127
 - B. 153
 - C. 175
 - **D.** 137
 - E. 573

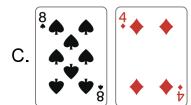
The same shape represents the same number, and different shapes represent different numbers.

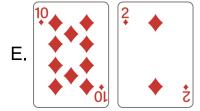
$$\bigcirc = \triangle + \triangle$$

$$\bigcirc + \triangle + \triangle = 44$$

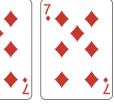
Then,
$$\bigcirc = \underline{\hspace{1cm}}$$
.

- A. 22
- **B.** 12
- **C**. 6
- D. 5
- E. 4


____ is formed by 1 ten and 7 ones.
 A. 177
 B. 107
 C. 17


- **D.** 71
- E. 10

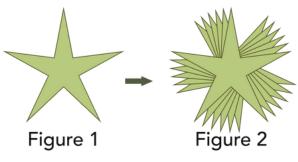
multiply the numbers on each pair of cards. Which of the followings has the largest result?



In the following column addition, A, B, and C each stands for a digit. Find the value of A + B + C.

	9	9	C
	9	B	9
+	$oxed{A}$	1	6
2	0	2	0

A. 4


B. 6

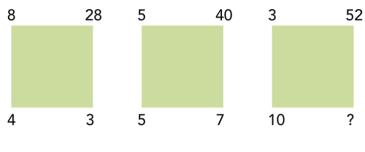
C. 7

D. 10

E. 0

12 Kate has some shapes which are the same as Figure 1, and then she puts them on a table in the way as shown in Figure 2. How many shapes does she use in total?

A. 36


B. 30

C. 18

D. 12

(B) Observe and find the pattern in figures below. What is the missing number?

- A. 15
- B. 14
- **C.** 12
- **D**. 10
- **E**. 7

Which two of the solid figures in Figure 1 can form Figure 2?

- A. 1) and 2)
- B. ① and ④
- C. ② and ③
- D. ③ and ④
- E. ② and ④

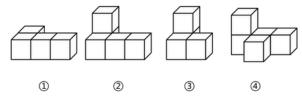


Figure 1

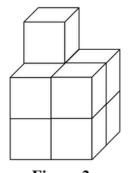
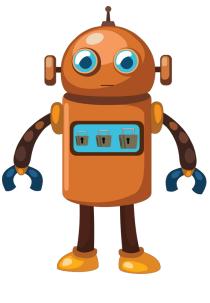
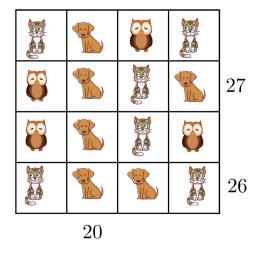



Figure 2

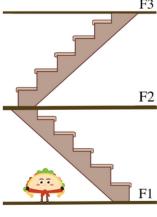
- The switch to open a door is on the stomach of the robot below. The stomach has three locks from smallest to largest with three different keys: the key with a square, the key with a triangle, and the key with a circle. According to the clues given by the robot, which of the following statements is correct?
 - (1) The key with a square corresponds to a larger lock than the key with a triangle;
 - (2) The key with a circle corresponds to a smaller lock than the key with a triangle.



- A. The key with a triangle corresponds to the smallest lock.
- B. The key with a square corresponds to the medium lock.
- C. The key with a circle corresponds to the medium lock.
- D. The key with a square corresponds to the largest lock.
- E. The key with a circle corresponds to the largest lock.

The same animal represents the same number, and different animals represent different numbers. The numbers outside the big square are the sums of the four numbers in that row or column. What number does the cat respresent?

A. 5


B. 8

C. 10

D. 16

E. 9

The stairs from the first floor to the third floor in a building are shown below. Anto is climbing upstairs. It takes him 1 minute to climb a floor. How many minutes does Anto need to walk from the 1st floor to the 6th floor?

A. 6

B. 5

C. 4

D. 3

There are 10 digits and they want to line up to take a photo. The difference between every 2 adjacent digits is 1. There is/are ____ way(s) for them to line up.

A. 0

B. 1

C. 2

D. 3

E. 4

is 141 cm and he is the last one in the line. Mulan is the 10th counting from the front. If there is no two children having the same height, and all their heights are whole numbers, what is the tallest possible height of Mulan?

A. 119 cm

B. 120 cm

C. 121 cm

D. 131 cm

E. 152 cm

How many pumpkins should be taken from the first basket to the second one to make the baskets have the same number of pumpkins?

- A. 5
- B. 6
- **C**. 11
- D. 16
- E. 18

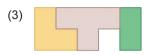
Observing the equation, which of the following numbers should be filled in the box with the question mark?

$$\begin{array}{c|c} ? & \times & 4 & - & 2 & = & 0 \end{array}$$

- A. 5
- B. 4
- **C**. 3
- **D.** 2
- **E**. 1

The 4 figures below are formed by 6 different shapes. Different shapes represent different digits, and each of the first three figures is formed by 3 shapes and represents a 3-digit number among 928, 526, and 876. Then, which number does the last figure represent?

B. 289


C. 295

D. 625

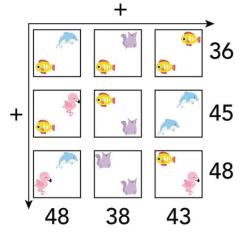
E. 965

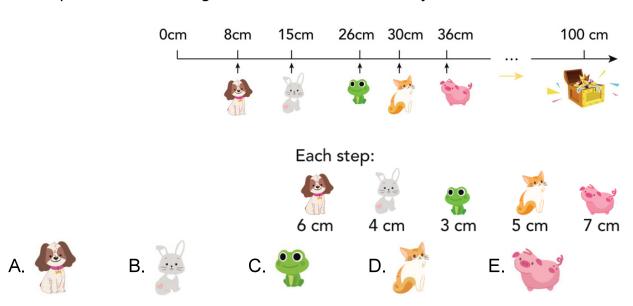
Math Town holds a counting competition. There are some toys in a showcase. Anyone who can count the number of sheep correctly will win all the toys. How many sheep are in the showcase?

A. 5

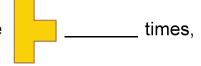
B. 6

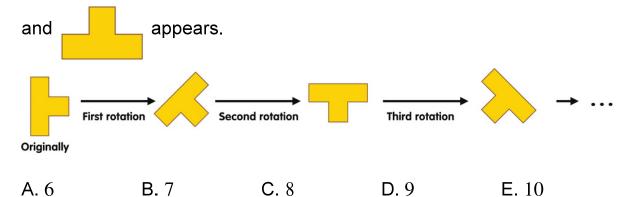
C. 7


D. 8


There are some animal stickers. The same animal sticker represents the same number, and the different animal stickers represent different numbers. The sums of the 6 numbers in each row or column are shown below.

If = 7, then = ____.


- A. 4
- B. 6
- C. 5
- D. 7
- E. 8

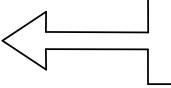

Five little animals start running to the right from different spots as shown in the picture. Who will get the treasure box exactly?

26 Observe the pictures and find the pattern. Rotate

Vicky cuts one piece out of this grid as shown below. Which of the following pieces could be the one she cuts out?

Daniel raises some ducks and dogs. All the ducks and dogs have 18 legs and 5 pairs of wings in total. How many ducks and dogs are there in total?

A. 18


B. 13

C. 9

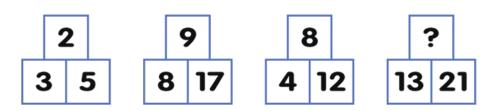
D. 7

E. 5

29 How many sides are there in the shape below?

A. 2

B. 4

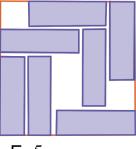

C. 7

D. 9

- 30 Oli is 7 years older than Kiko, and Lindsay is 5 years younger than Oli. Who is the youngest person?
 - A. Oli
 - B. Kiko
 - C. Lindsay
 - D. Both Oli and Kiko are the youngest
 - E. Impossible to determine

3 Observe the figures below. ? = _____.

A. 24

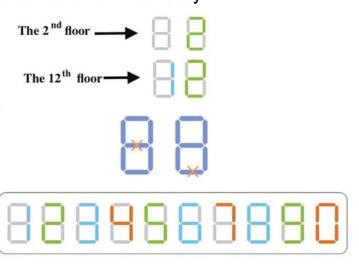

B. 21

C. 11

D. 18

Seven identical candy bars are arranged on the bottom of a square box. Cindy wants to slide the candy bars so that there will be room for one more candy bar. What is the least number of candy bars she should slide?

A. 1


B. 2

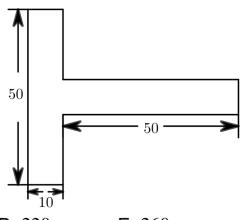
C. 3

D. 4

E. 5

In an elevator, there is a *LED* screen made up of small tubes to show the number of floor. Some of the tubes are faulty so that some floors cannot be properly shown. If Anna wants to reach the 20th floor from the first floor, there are _____ floors that can be shown correctly.

A. 4

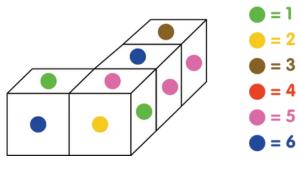

B. 5

C. 6

D. 7

The perimeter of the following shape is _____.

A. 110


B. 160

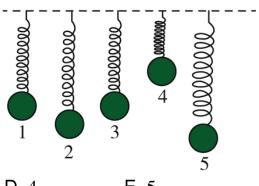
C. 200

D. 220

E. 260

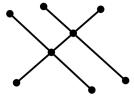
James places four identical cubes to form a figure below. There are 6 dots of different colors on the 6 faces, and each color represents a number as shown on the right. What is the sum of four numbers represented by the colors at the bottom of the figure?

A. 18


B. 15

C. 14

D. 13



65 Vera has 5 identical springs, and she hangs five balls with the springs as shown below. Which of the following balls is the heaviest?

- **A**. 1
- **B**. 2
- **C**. 3
- D. 4
- E. 5

3 How many line segments are there in the figure below?

- A. 3
- B. 5
- **C**. 7
- D. 12
- **E**. 18

Let's convert!

1 hour 45 minutes = ____ minutes

A. 145

B. 105

C. 95

D. 75 E. 65

 \bigcirc In a math quiz, Mr. Pan records 85 points as +5, and records 88 points as +8. Max gets 93 points. How does Mr. Pan record Max's score?

A. +3

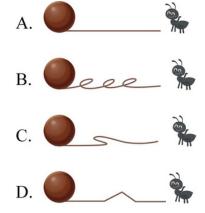
B. +13

C. +15

D. +11

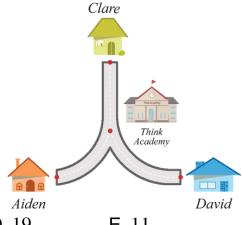
E. +23

Five ants want to eat the chocolate balls, and they must walk along the rope. They start at the same time at the same speed. Which of the following ants would be the first one to eat the chocolate ball?



B. *C*

C. *B*


D.D

 $\mathsf{E}.\,E$

- The picture below shows the location of Think Academy and the houses of Aiden, Clare, and David.
 - ① Aiden's house is 27 km away from Clare's house;
 - 2) Clare's house is 35 km away from David's house;
 - (3) Think Academy is 24 km away from David's house.

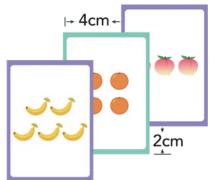
Thus, the distance between Aiden's house and Think Academy is _____ km.

A. 12

B. 16

C. 24

D. 19


E. 11

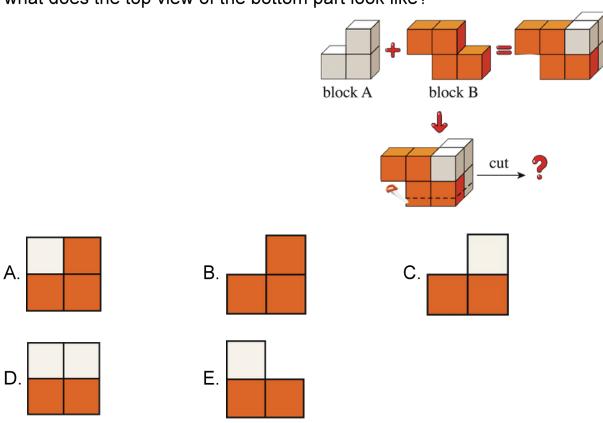
A. 1

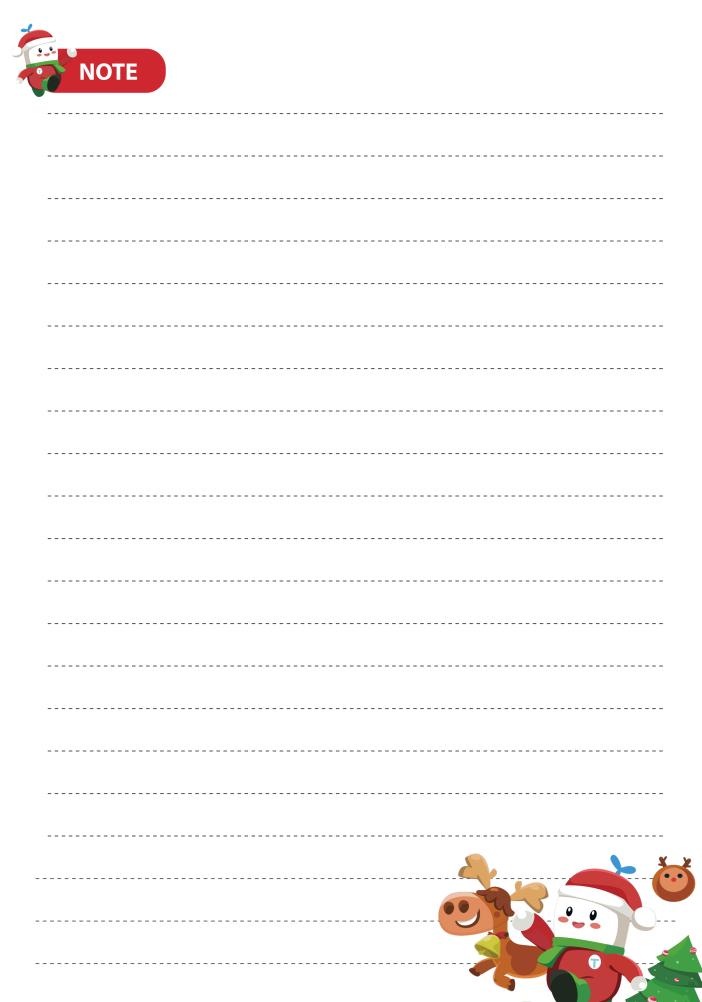
There are some animals lining up to buy cakes. Momo the Monkey wants to give one lollipop to each animal in front of her. How many lollipops should she prepare?

There are 3 fruit cards of the same size, and each card has a width of 6 cm and a length of 9 cm. Alan places the cards one on each other at equal spaces to form a shape as shown below. What is the perimeter of this shape in centimeters?

A. 90 B. 68 C. 54 D. 27

E. Impossible to determine.




Observe the pictures carefully, and find the pattern. What number does the last picture stand for?

- A. 22
- B. 212
- C. 4
- D. 211
- E. 112

A Sandy uses block A and block B to form a new figure as shown below. If Sandy cuts the figure along the dotted line and removes the upper part, what does the top view of the bottom part look like?

Think Academy US Online

https://www.thethinkacademy.com/

Basic Math

G2 [B1] Number and Operations

Addition and Subtraction within 100

1 (1) 1:30

2:5

(2) 1:60

2:8

(3) 1:43

2:17

2 (1) 1:33

2:98

(2) 1:98

2:27

(3) 1:13

2:69

(4) 1:55

2:83

(1) 1:82

2:54

(2) 1:91

2:89

(3) 1:100

2:69

4 (1) 1:3

2:6

- (2) 1:25
 - 2:9
- (3) 1:21
 - 2:23
- (4) 1:13
 - 2:22
- (5) 1:16
 - 2:15
- 5 (1) 79
 - (2) 89
 - (3) 87

(2) 22 + 49 = 71

- (1) 1:30
 - 2:34
 - (2) 1:47
 - 2:42
 - (3) **1:36**
 - 2:45
 - (4) 1:41

2:**43**

(5) 1:61

2:52

8 (1) 1:11

2:4

(2) 1:7

2:11

(3) 1:26

2:28

 $9 \quad 1:64 + 38 = 102$

2:36+17=53

- 10 (1) 28
 - (2) **29**
 - (3) **37**
 - (4) 48

8		> /	7		_
1	7		1	6	
2	6		2	5	
3	5		3	4	
4	4		4	3	

12 (1) 1:87

2:7

(2) 1:19

2:38

- (3) 1:95
 - 2:134
- (4) 1:107
 - 2:37
- 13 (1) 1:69
 - 2:88
 - (2) 1:78
 - 2:82
 - (3) 1:61
 - 2:92
- 14 (1) 1:48
 - 2:40
 - (2) 1:56
 - 2:55
 - (3) **1:23**
 - 2:59
- 15 (1) 1:49
 - 2:46
 - (2) 1:27
 - 2:19
 - (3) 1:28
 - 2:14
 - (4) 1:43
 - 2:34

17 (1) 1:41

2:41

(2) 1:47

2:54

(3) 1:51

2:55

(4) 1:54

2:52

(5) 1:34

2:45

18 1:40

2:55

3:**34**

4:29

5:**45**

6:29

19 (1) 79

(2) 84

(3) 98

(4) 59

(5) 86

(6) **69**

(7) 99

(8) 58

20 4, 8, 13.

- 21 (1) 1:51
 - 2:50
 - (2) **1:12**
 - 2:13
 - (3) **1:33**
 - 2:33
 - (4) **1:32**
 - 2:21
- (1) 1:49
 - 2:14
 - (2) 1:39
 - 2:33
 - (3) 1:22
 - 2:48
 - (4) 1:39
 - 2:31
 - (5) **1:23**
 - 2:49
 - (6) 1:15
 - 2:47
- 23 (1) 1:15
 - 2:22
 - (2) 1:41
 - 2:40
 - (3) **1:24**
 - 2:31
 - (4) 1:33

2:22

- 24 (1) 31
 - (2) **31**
 - (3) 109
 - (4) 121

- 25 (1) 88
 - (2) 76
 - (3) **96**
 - (4) 67
 - (5) 87
 - (6) 86
 - (7) 77
 - (8) **68**

26 1:11

- 2:31

- 27 (1) 1:83
 - 2:83
 - (2) 1:76
 - 2:74
 - (3) 1:100
 - 2:94
 - (4) 1:91
 - 2:91

- (1) 1:14
 - 2:86
- (2) 1:79
 - 2:81
- (3) 1:69
 - 2:31
- (4) 1:14
 - 2:96
- 39 + 62 = 101. Mia forgot to include the regrouping on tens place.
- 30 (1) 1:9
 - 2:24
 - (2) 1:28
 - 2:48
 - (3) 1:55
 - 2:24
- 31 (1) 1:43
 - 2:42
 - (2) 1:57
 - 2:61
 - (3) 1:82
 - 2:52
- 32 (1) 1:34
 - 2:35
 - (2) 1:20
 - 2:25

- (3) 1:31
 - 2:21
- (4) 1:21
 - 2:10
- (5) **1:31**
 - 2:13
- 33 (1) 98
 - (2) 107
 - (3) 108
- 34 (1) 1:50
 - 2:41
 - (2) **1:34**
 - 2:14
 - (3) 1:33
 - 2:3
 - (4) 1:41
 - 2:18
 - (5) **1:42**
 - 2:14
- 35 (1)
 - + 1 3

7

2

- (2) 3 2
 - + 1 4
- (3)

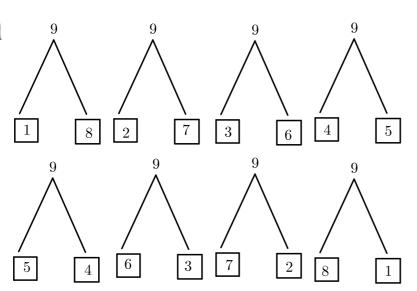
4 4
+ 6
5 0
3 8
+ 2 9

- 36 (1) 1:19
 - 2:14
 - (2) 1:9
 - 2:5
 - (3) **1:29**
 - 2:13
 - (4) 1:5
 - 2:23
 - (5) 1:18
 - 2:14
- (1) 1:87
 - 2:100
 - (2) 1:62
 - 2:79
 - (3) 1:92
 - 2:100
- 38 (1) 1:16
 - 2:28
 - (2) **1:27**
 - 2:23
 - (3) 1:16

2:**22**

(4) 1:25

2:9


(5) **1:23**

2:21

(6) 1:22

2:30

- 40 1 and 4, 2 and 3.
- **41** (1) 1:112

2:116

(2) 1:100

2:18

(3) 1:28

2:27

(4) 1:**29**

2:125

- 42 (1) 1:57
 - 2:58
 - (2) 1:8
 - 2:45
 - (3) **1:27**
 - 2:9
 - (4) 1:19
 - 2:45

- 43 (1) 46
 - (2) 48
 - (3) **46**

 - (4) **45**
 - (5) **43**
 - (6) **26**

44 (1)

- 6
- 8 4 4 5 3

3

- (2)
- 3 5 7 0
- (3)
- 2 7
- 8 5 3 6 6
- (4)

- 45 (1) 1:116
 - 2:90

2:137

(3) 1:71

2:90

(4) 1:88

2:105

46

(1) 1:21

2:9

(2) 1:41

2:27

(3) **1:26**

2:32

47

(1) 1:45

2:22

(2) 1:35

2:39

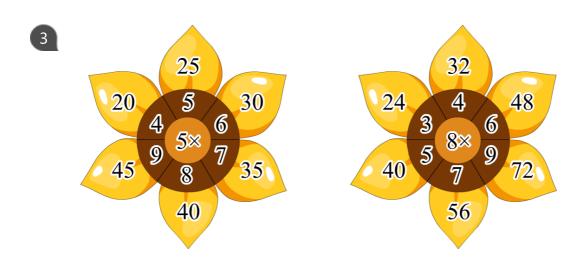
(3) 1:34

2:20

(4) 1:39

2:23

(5) **1:31**


2:46

(6) 1:39

2:23

Multiplication

- 1 $2 \times 6 = 12 \text{ or } 4 \times 3 = 12$
- 2 $3 \times 6 = 18$ or $6 \times 3 = 18$

- 40; 42; 72; 45; 64
- $5 \ 2 \times 4 = 8 \text{ or } 4 \times 2 = 8$
- (1) 1:36 2:4
 - (2) 1:282:14
 - (3) 1:16 2:**3**0
 - (4) 1:542:36
- $7 2 \times 5 = 10$
- 8 1:3

Alternative:5

2:5

Alternative:3

3:**15**

- 9 (1) 1:24
 - - 2:28
 - (2) 1:18
 - 2:15
 - (3) 1:64
 - 2:30
 - (4) 1:14
 - 2:16
- 10 (1) 56
 - (2) **10**
 - (3) **35**
 - (4) **16**
 - (5) 40
- (1) 64
 - (2) **63**
 - (3) 27
 - **(4) 49**
 - (5) **42**
- 12 1:5
 - 2:3
 - 3:**15**

13 1:4

2:5

3:**20**

(1)
$$5 \times 2 = 10 \text{ or } 2 \times 5 = 10$$

(2)
$$4 \times 5 = 20 \text{ or } 5 \times 4 = 20$$

2:8

2:12

2:40

2:28

2:81

$$16 (1) 4 \times 6 = 24$$

$$(2) \quad 5 \times 5 = 25$$

$$\boxed{17} \ 3 \times 5 = 15$$

Alternative:7

2:7

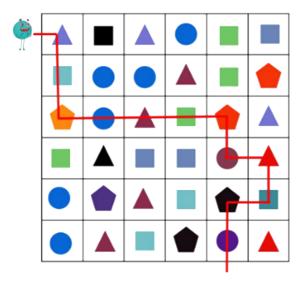
Alternative:5

3:**35**

- 20 (1) 1:5
 - 2:4
 - (2) 1:6
 - 2:3
- 21 1:4
 - 2:4
 - 3:**16**
- There are $6 \times 6 = 36$ leaves.
- $23 \quad 2 \times 5 = 10$
- 24 (1) 1:32
 - 2:12
 - (2) 1:16
 - 2:6
 - (3) 1:72
 - 2:18
 - (4) 1:48
 - 2:9
 - (5) 1:14
 - 2:15

- 25 (1) 1:72
 - 2:40
 - (2) 1:18
 - 2:8
 - (3) **1:24**
 - 2:25
 - (4) 1:48
 - 2:6

- 26 (1) 1:28
 - 2:45
 - (2) 1:14
 - 2:**24**
 - (3) 1:42
 - 2:63
 - (4) 1:54
 - 2:27
 - (5) 1:49
 - 2:72


G2 [B2] Geometry

Plane Shapes

- 1 The tree in the middle.
- 2 6
- 3 20
- 4 1:4
 - 2:2
 - 3:6
 - 4:5
- 5 5
- 6 There are 6 rectangles, and 2 triangles
- 7 4, 10, 3, 4, 5
- 8 1:4
 - 2:4
 - 3:6
 - 4:2

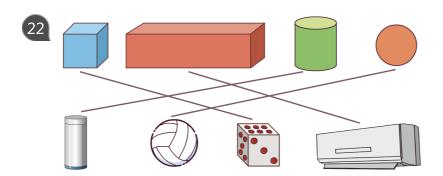
- 10 4
- 11 C 12 BAEFC D
- 13 17
- 4 triangles
 - 3 rectangles
 - 1 square
 - 3 circles
- **15** 1:2
 - 2:8
 - 3:7
 - 4:7

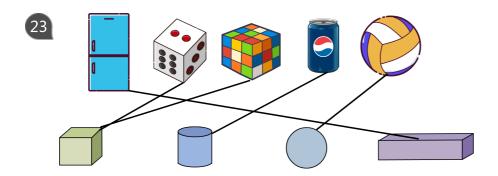
- 17 BAEFC D
- 18 1:2
 - 2:3
 - 3:8
 - 4:6
- 19₆
- 20 B 21 A
- 22 2, 8, 2, 2, 2
- 23 ₂

Solid Figures

1:4

- 2:3
- 3:4
- 4:5
- 2 7
- 3 A
- 4 (1) 1:6
 - 2:8
 - 3:**12**
 - 4:same
 - (2) 1:8
 - 2:12
 - 3:6
 - 4:1
- **5** B
- 6 1:6
 - 2:**12**
 - 3:5
 - 4:8
 - 5:8
 - 6:18
- 7 1:①,④,⑨,⑬,
 - 2:2,3,5,6,7,8,0,11,12,14,15


- 8 5
- 9 B
- The first figure has 8 vertices, 6 faces, and 12 edges.


 The second figure has 6 vertices, 6 faces, and 10 edges.

 The third figure has 10 vertices, 7 faces, and 15 edges.

 The fourth figure has 5 vertices, 6 faces, and 9 edges.
- (1) the same
 - (2) equal
- 2, 3, 7, 4, 6, 5.
- **13** 6, 6, 5.
- 14 c
- 15 Cone
- 16 DBCAE F
- **17** 24 .
- 18 ××× 19 c

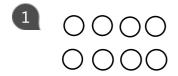
- 20 1:7
 - 2:4
 - 3:**3**
 - 4:2
- 21 DABC

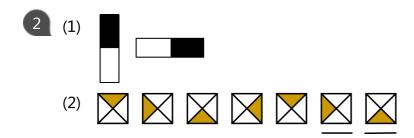
- 24 4
- 25

- 26 1:1
 - 2:1
 - 3:1
- 27 1:1
 - 2:8
 - 3:**5**
 - 4:2
 - 5:**3**
- 28 D 29 ECBFA D 30 D

G2 [B3] Word Problems

Addition and Subtraction Word Problems


- 1 84
- 2 10
- 3 80
- 4 65
- 5 132
- 6 70
- 7 100
- 8 65
- 9 130
- 10 114
- 105


- 12 64
- 13 ₅₅
- 14 128
- 15 ₆₅
- 16 81
- **17** 60
- 18 148
- 19 110
- 20 110
- 21 164

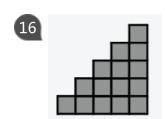
G2 [B4] Logical Reasoning

Patterns in Shapes

4 5

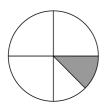


6 c



18 B

20



21 C 22 A

23 1:1

2:2

24

25 C 26 B

Patterns in Numbers

680

690

700

2 366

367

368

3 986, 984, 981, 980.

4 (1) **30**

- (2) 33
- 5 (1) 15
 - (2) 81
- 610
 - 620
 - 630
- (1) 52
 - (2) **63**
 - (3) **27**
 - (4) 44

G2 [B5] Measurement

Measuring and Comparing

2 1:6 2:3

(1) 1:heavier 2:9

(2) 1:lighter 2:2

1:6
2:longer
Alternative:Longer
3:6

5 (1) 1:heavier 2:2

(2) 1:lighter2:2(3) 1:lighter

2:2

- 7 1:2
 - 2:6
- 8 1:5
 - 2:7
- 9 6
- 10 7
- 16
- 12 1:5
 - 2:1
 - 3:**3**
- 13 7
- 14 (1) 1:3

2:right

- (2) **1:2**
 - 2:left
- (3) 1:6
 - 2:right

Time and Clock

- 1:3
 - Alternative:03
 - 2:55
 - 3:8
 - Alternative:08
 - 4:45
 - 5:11
 - 6:20
- 2 1:30;9:30.
- 3 1:20
- 4 (1) B (2) A
- **5** 4:05; 8:40
- 6 B 7 A
- 9 1:00;9:00

Advanced Math

G2 [A1] Number and Operations

Addition and Subtraction Strategies

(1) 305

123

(2) **32**

40

2 1:85

2:14

3 1:33

2:94

4 (1) +

(2) +

5 (1) 117; 76

(2) 138; 133

6 (1) **250**

132

(2) 33

53

7 1:74

2:65

8 1:91

2:75

9 (1) 112

107

(2) 108

99

(3) 1:159

2:139

10 (1) 1:74

2:20

(2) 1:54

2:4

(3) 1:90

2:32

11 (1):14

(2):25

(3):42

12 (1) 12

(2) 18

(3) 48

(4) 70

- 13 (1):121
 - (2):73
 - (3):39
- 14 (1) 8
 - (2) **36**
- **15** (1) 12
 - (2) 16
 - (3) **58**
 - (4) 50
- 16 1:127
 - 2:18
- **17** (1) 75
 - (2) **49**
- 18 (1) +
 - (2) +
- 19 (1) 115
 - (2) 96
- 20 1:97
 - 2:70
- 21 (1) 59

41

(2) **39**

12

(3) 394

209

Addition and Subtraction within 1000

(1) 294

(2) **289**

2 (1) 163

(2) **201**

(3) 942

3 (1)

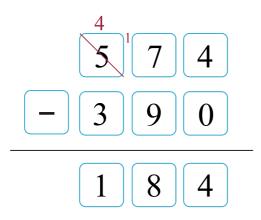
 $\begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix}$

535, + 1 4 9

5 3 5

634, + 2 8 9

6 3 4


4 (1) 789

(2) 489

(3) **49**

- 5 (1) 597
 - (2) 554
- 6 (1) 425
 - (2) 848
 - (3) **582**
- (1) 195
 - (2) **264**
- 8 914
- 9 (1) 101
 - (2) 96
 - (3) **281**
 - (4) 832
- 10 194
- (1) 95
 - (2) **211**
- 12

 1
 1
 1
 9
 4

 +
 6
 7

 7
 6
 1

(1) 216 (2) 303

8 0 6 + 9 5 9 0 1

16

6 6

- (1) 667
 - (2) 449

Multiplication and Division Calculation

1 (1) 1:15

2:8

(2) 1:30

2:4

(3) 1:27

2:9

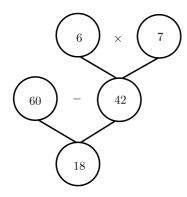
(4) 1:24

2:4

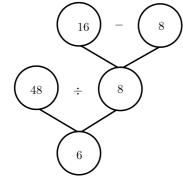
(5) 1:16

2:2

2 35


3 8

- 4 (1) 1:6
 - 2:9
 - (2) 1:6
 - 2:9
 - (3) 1:7
 - 2:24
 - (4) 1:3
 - 2:4
- 5 (1) 5 15 3
 - (2) **18 6 12**
 - (3) 8 **4 24**
- 6 9
- (1) 1:6
 - 2:5
 - (2) **1:2**
 - 2:7
 - (3) **1:3**
 - 2:6
 - (4) 1:6
 - 2:6
 - (5) 1:7
 - 2:7
 - (6) 1:18
 - 2:4
- 8 (1) 9


- (2) 48
- (3) **6**
- (4) 8
- (5) 18
- 9 (1) 1:4
 - 2:**3**
 - (2) 1:7
 - 2:5
 - (3) **1:2**
 - 2:63
 - (4) 1:8
 - 2:7
 - (5) 1:9
 - 2:4
 - (6) 1:24
 - 2:7
- 10 1:6
 - 2:9
 - 3:**3**
 - 4:2
 - 5:9
 - 6:8
 - 7:4
 - 8:2
 - 9:**6**
- $11 \quad 15 \div 3 = 5$

- **1**2 (1) **2**

 - (2) **36**
 - (3) 6
 - (4) 8
 - (5) **25**
- 13 (1)

(2)

- (1) 1:7
 - 2:1
 - (2) 1:8
 - 2:**2**
 - (3) 1:8
 - 2:2
 - (4) 1:7
 - 2:5
- 15 (1) 4

- (2) **36**
- (3) 4
- (4) 0
- (5) **48**
- 16 (1) **2**
 - (2) **25**
 - (3) **3**
 - (4) 9
 - (5) **24**
- **17** 5
- 18 (1) 9
 - (2) 5
 - (3) 4
 - (4) 9
 - (5) 7
- 19 $8 \times 5 = 40 \text{ or } 5 \times 8 = 40$
- 20 (1) 9
 - (2) **42**
 - (3) 4
 - (4) 6
 - (5) **45**
- 21 (1) 1

- (2) **45**
- (3) 7
- (4) 7
- (5) 72
- $22 \quad 3 \times 5 = 15 \; ,$
 - $15 \div 5 = 3$,
 - $15 \div 3 = 5$.
- 23 21
- (1) (1): 63
 - (2): 63
 - (3): 9
 - (4): 7
 - (2) (1): 7
 - (2): 9
 - (3):7
 - (4): 6
- 25 ₃
- $26 \quad 4 \times 7 = 28$
 - $7 \times 4 = 28$
- 27 (1) 1:42
 - 2:8
 - (2) 1:63

2:2

(3) 1:21

2:3

(4) 1:20

2:2

G2 [A2] Geometry

Understand the Perimeter

- **1** 56
- 2 B
- 3 88 cm
- 4 34
- 5 154
- 6 49 cm.
- 7 30 cm.
- 8 ①24 m; ②20 m.
- 9 12
- 10 (1) 14
 - (2) **16**
 - (3) 14

- 11 48
- 12 40 cm
- 13 220
- 14 c
- 15 ₃₈
- 16 55 cm

The Perimeter of Rectangle and Square

- **1** 32 cm
- (1) 140 cm
 - (2) 114 cm
- 3 8
- 4 2400 m
- **5 20**cm, **20**cm.
- 6 1:30 2:60

- **7** A
- 8 6 m
- 9 8 cm
- 10 c
- **11** 30
- 12 1:26 2:20
- 13 1:28 2:40
- 14 10
- 15 1:60 2:64
- 16 ①24m ②28m
- 17 1600 m

- 18 86
- 19 g cm
- 20 (1) 18 m
 - (2)10 m
 - (3)28 m
- 21 3000 inches
- 22 120 m
- 23 48 cm
- 24 3200 m
- 25 (1) 40 m
 - (2) **16 m**
- ²⁶ 16

Counting Plane Shapes

- **1** 61
- 2 7

- 3 35
- 4 6
- 5 21
- 6 21
- 7 12
- 8 59
- 9 36
- 10 (1) 10
 - (2) **15**
- **11** 6
- 12 36
- 13 29

Counting Cubes

16

- 2 c
- 3 7
- 4 14
- **5** A
- 6 5
- 7 1:4
 - 2:6
 - 3:4
- 8 9, 12.
- 9 13
- 10 4
- **1** 6
- **12** 6;8
- 13 7

14 17

1	5

	1	2	3
number of cubes	10	7	10

16 1:6

2:6

3:**14**

17 16

18 30

19 9, 11.

20 10 ; 10

21 3

22 11 ; 10

23 g

24 C

25 1:7

2:8

G2 [A3] Word Problems

Multiplication and Division Problems

- 1 (1) 1:16
 - 2:8
 - 3:16
 - 4:2
 - 5:8
 - 6:16
 - 7:4
 - 8:16
 - 9:4
 - 10:4
 - (2) 1:18
 - 2:6
 - 3:18
 - 4:3
 - 5:6
 - 6:18
 - 7:3
 - 8:18
 - 9:6
 - 10:3

- (1) 3+3+3+3+3=15 or 5+5+5=15; $3\times 5=15$ or $5\times 3=15$.
 - (2) 8+8+8+8=32 or 4+4+4+4+4+4+4+4=32; $4\times 8=32$ or $8 \times 4 = 32$.

- 3 D 4 C
- 5 5
- 6 c
- 7 18
- 8 c
- 9 12
- 10₅

Split Number Problems

- **1** 5
- 2 38
- 3 3
- 4 4
- **5** D

- 6 1
- 7 22
- 8 11
- 9 4

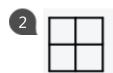
Interval Problems

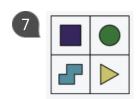
- 1:3
 - 2:6
- 2 1:7
 - 2:9
- 3 37

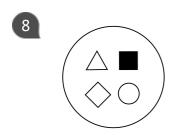
Lining Up Problems

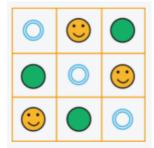
- 1 c 2 B
- 3 6
- 4 14
- 5 D 6 A 7 D

- 8 13
- 9 19
- 10 D
- 11 17
- 12 B 13 C 14 B
- **15** 5
- 16 7
- **17** 8
- 18 C
- 19₆
- 20 6
- 21 A 22 A
- 23 ₆


- 24 B
- 25₈


G2 [A4] Logical Reasoning


Patterns in Shapes



12

Equal and Balance

- 9; 6; 7
- 2 1
- 3 1:3 2:2

3:1

- 4 12
- **5** 3
- 6 A
- **7** 6.
- 8 6

- 9 1:8
 - 2:9
- 1:10
 - 2:5
- 10; 20
- 12 3
- 13 1:2
 - 2:3
 - 3:1
- 14 10.
- **15** 8
- 16 3; 4
- **17** 9.
- 18
- = (11)
- = (2)

- 19₃
- 20 6;4;2
- blue flower = 3, red flower = 9.
- 22 D
- 23 6
- 24 C
- 25₆
- 26 4
- 27 4
- 28 6

G2 [A5] Measurement

Time and Clock

- 7:42; 6:15
- 2 5; 5.
- 3 8:50 a.m.; 8:25 a.m.
- 4 B 5 D 6 C
- 5:30; 4:45

Money Calculation

- 1:4
 - 2:3
- 2 5
- 3 4
- 4 ①If she buys a notebook and a scissor, there is no money left.
 - ②If she buys a notebook and a ruler, she still has 1 dollar.
 - ③If she buys a scissor and a ruler, she still has 2 dollars.

- (4) If she buys a ruler and a pencil-box, there is no money left.(There is no single answer)
- **5** B
- 6 1:6

2:4

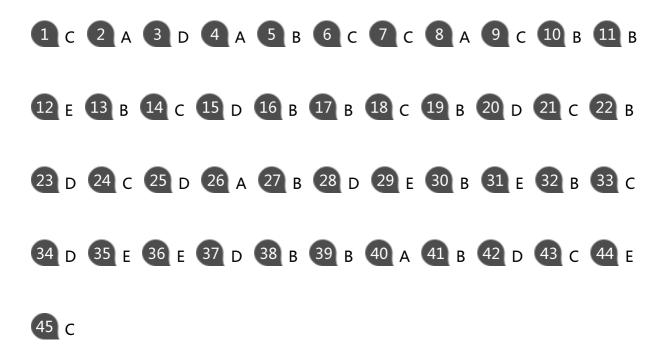
- His money is enough, and the change is 2 dollars.
- 8 Not enough, she needs 2 dollars more.
- 9 (1) 25 + 18 = 43 dollars.
 - (2) 18 + 15 = 33 dollars
- (1) 10 dollars.
 - (2) **13** dollars
- 11 74 dollars
- (1) Type *B*.
 - (2) **12** dollars.
- 28 dollars 13 cents
- 14 (1) 1:35

2:-

- 3:**27**
- 4:8
- (2) 1:46
 - 2:+
 - 3:54
 - 4:100
- 15 (1) 10 dollars.
 - (2) Toy car is the most expensive one and doll is the cheapest one.

 The difference is 14 dollars.
- 16 (1) 13 dollars.
 - (2) 5 dollars
- 17 No; she needs 6 dollars more.

Crazy Math



G2 [C1] MK Level 1-2

G2 [C2] Think Cup

