Solving and Graphing Compound Inequalities

1 Solve the inequality.

$$-1 < rac{2-2x}{2} < 2$$

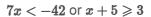
2 Solve the inequality.

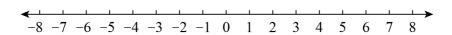
$$-2 < \frac{3-2x}{3} < 2$$
 $-x < 2$

- 3 Solve the compound inequality $-8 < \frac{3x-1}{5} \leqslant 4$.

- A. $-11 < x \leqslant 4$ B. $-8 < x \leqslant 9$ C. $-13 < x \leqslant 7$ D. $-20 < x \leqslant 13$

- The solution of the system of linear inequalities $\begin{cases} 3x+1\geqslant 7\\ 4x-3<9 \end{cases}$ is _____ . A. $x\geqslant 2$ B. x<3 C. $x<rac{3}{2}$ D. $2\leqslant x<3$

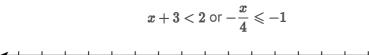

- $oxed{5}$ How many integral solution(s) is/ are there for x if $-24\leqslant 7x+4\leqslant 18$?
 - A. 4

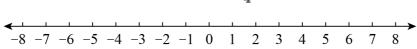

B. **6**

- C. 7
- D. 8

6 Solve the compound inequality $-1 < \frac{1-2x}{4} \leqslant 2$.

7 Solve the inequalities and graph the solution.





8 Solve the inequalities and graph the solution.

$$2x + 7 < -11$$
 or $-3x - 2 < 13$

9 Solve the inequality and graph the solution.

- 10 Which integer n satisfies $\frac{3}{10} < \frac{n}{20} < \frac{2}{5}$?
 - A. **3**
- B. 4
- C. 5
- D. 6
- E. 7

Solving and Graphing Compound Inequalities

Solve the inequality.

$$-1 < \frac{2-2x}{2} < 2$$

Answer 1:-1

2:2

Solution -2 < 2 - 2x < 4

$$-4 < -2x < 2$$

$$-1 < x < 2$$

Solve the inequality.

$$-2 < \frac{3-2x}{3} < 2$$

Answer $1:-\frac{3}{2}$

$$1:-\frac{5}{2}$$
 $2:\frac{9}{2}$

Solution
$$-6 < 3 - 2x < 6$$

$$-9 < -2x < 3$$

$$-\frac{3}{2} < x < \frac{9}{2}$$

3 Solve the compound inequality $-8 < \frac{3x-1}{5} \leqslant 4$.

$$\Delta = 11 < r < \Delta$$

C.
$$-13 < x \leqslant 7$$

A.
$$-11 < x \leqslant 4$$
 B. $-8 < x \leqslant 9$ C. $-13 < x \leqslant 7$ D. $-20 < x \leqslant 13$

Solution $-40 < 3x - 1 \le 20, -39 < 3x \le 21, -13 < x \le 7.$

The solution of the system of linear inequalities $\begin{cases} 3x+1\geqslant 7 \\ 4x-3<9 \end{cases}$ is _____ . A. $x\geqslant 2$ B. x<3 C. $x<rac{3}{2}$ D. $2\leqslant x<3$

Answer D

Solution Solve $egin{cases} 3x+1\geqslant 7 \ 4x-3 < 9 \ 2 \end{cases}$,

①: $x \geqslant 2$,

②: x < 3.

The solution is $2 \leqslant x < 3$.

How many integral solution(s) is/ are there for x if $-24\leqslant 7x+4\leqslant 18$?

A. 4

B. 6

C. 7

D. 8

Answer C

Solution $-24 \leqslant 7x + 4 \leqslant 18$

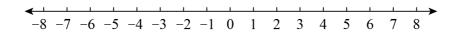
 $-28 \leqslant 7x \leqslant 14$

 $-4\leqslant x\leqslant 2$

x = -4, -3, -2, -1, 0, 1, 2.

There are seven.

The answer is C.


6 Solve the compound inequality $-1 < rac{1-2x}{4} \leqslant 2$.

Answer $-\frac{7}{2} \leqslant x < \frac{5}{2}$

Solution
$$-4 < 1 - 2x \leqslant 8, -5 < -2x \leqslant 7, -\frac{7}{2} \leqslant x < \frac{5}{2}.$$

Solve the inequalities and graph the solution.

$$7x < -42$$
 or $x+5 \geqslant 3$

Answer x < -6 or $x \geqslant -2$

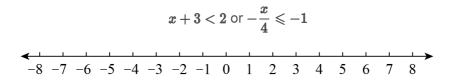
Solution
$$7x < -42$$

$$x < -6$$

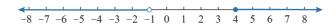
$$x+5\geqslant 3$$

$$x \ge -2$$

$$\therefore x < -6 \text{ or } x \geqslant -2$$


8 Solve the inequalities and graph the solution.

$$2x + 7 < -11$$
 or $-3x - 2 < 13$


Answer x < -9 or x > -5

Solution
$$2x+7<-11 \qquad ext{or} \quad -3x-2<13 \ 2x<-18 \qquad \qquad -3x<15 \ x<-9. \qquad x>-5.$$

9 Solve the inequality and graph the solution.

Answer x < -1 or $x \geqslant 4$

Solution x+3<2

$$x < -1$$

$$-\frac{x}{4} \leqslant -1$$

$$\left(-\frac{x}{4}\right) \div \left(-\frac{1}{4}\right) \geqslant (-1) \div \left(-\frac{1}{4}\right)$$

$$x\geqslant 4$$

$$\therefore x < -1 \text{ or } x \geqslant 4$$

- 10 Which integer n satisfies $\frac{3}{10} < \frac{n}{20} < \frac{2}{5}$?
 - A. 3
- B. 4
- C. 5
- D. 6
- E. 7

Answer

Solution (2018 Intermediate Mathematical Challenge Question #9)

If we multiply both sides of an inequality by a positive number, we obtain an equivalent inequality.

Therefore, by multiplying by the positive number **20**, we see that the given inequalities are equivalent to

$$6 < n < 8$$
.

The only integer that satisfies these inequalities is 7.