2021 AMC 10 A Fall

Complete problem set with solutions and individual problem pages

Problem 21 Hard

Each of the 20 balls is tossed independently and at random into one of the 5 bins. Let p be the probability that some bin ends up with 3 balls, another with 5 balls, and the other three with 4 balls each. Let q be the probability that every bin ends up with 4 balls. What is \frac{p}{q} ?(2021 AMC Fall 10A, Question #21)

  • A.

    1

  • B.

    4

  • C.

    8

  • D.

    12

  • E.

    16

Answer:E

Solution 1:

For simplicity purposes, we assume that the balls are indistinguishable and the bins are distinguishable. Let d be the number of ways to distribute 20 balls into 5 bins. We have p=\frac{5 \cdot 4 \cdot\left(\begin{array}{c} 20 \\ 3,5,4,4,4 \end{array}\right)}{d} \text { and } q=\frac{\left(\begin{array}{c} 20 \\ 4,4,4,4,4 \end{array}\right)}{d} Therefore, the answer is \frac{p}{q}=\frac{5 \cdot 4 \cdot\left(\begin{array}{c} 20 \\ 3,5,4,4,4 \end{array}\right)}{\left(\begin{array}{c} 20 \\ 4,4,4,4,4 \end{array}\right)}=\frac{5 \cdot 4 \cdot \frac{20 !}{3 ! \cdot 5 ! \cdot 4 ! \cdot 4 ! \cdot 4 !}}{\frac{20 !}{4 ! \cdot 4 ! \cdot 4 ! \cdot 4 ! \cdot 4 !}}=\frac{5 \cdot 4 \cdot(4 ! \cdot 4 ! \cdot 4 ! \cdot 4 ! \cdot 4 !)}{3 ! \cdot 5 ! \cdot 4 ! \cdot 4 ! \cdot 4 !}=\frac{5 \cdot 4 \cdot 4}{5}=(\mathbf{E}) 16 Remark By the stars and bars argument, we get d=\left(\begin{array}{c} 20+5-1 \\ 5-1 \end{array}\right)=\left(\begin{array}{c} 24 \\ 4 \end{array}\right)

Solution 2:

For simplicity purposes, the balls are indistinguishable and the bins are distinguishable. Let q be equal to \frac{x}{a} where a is the total number of combinations and x is the number of cases where every bin ends up with 4 balls. Notice that we can take 1 ball from one bin and place it in another bin so that some bin ends up with 3 balls, another with 5 balls, and the other three with 4 balls each. We have x \cdot \frac{\left(\begin{array}{l} 5 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 1 \end{array}\right)}{5}=16 x Therefore, we get p=\frac{16 x}{a}, from which \frac{p}{q}=(\mathbf{E}) 16