AMC 10 Daily Practice Round 2

Complete problem set with solutions and individual problem pages

Problem 25 Hard

For every integer n, we can represent it by n=2^ka_n, k is a nonnegative integer and a_n is an odd number. S_n=a_1+a_2+a_3+\cdots+a_n. Find S_{128}.

  • A.

    1366

  • B.

    2390

  • C.

    4098

  • D.

    5462

  • E.

    6878

Answer:D

By the definition, we know a_n=\frac{n}{2^k}=n-\frac{n}{2}-\frac{n}{4}-\cdots-\frac{n}{2^k}.

So for those n=2^k, S_{n}=1+2+3+\cdots+n-\frac{2+4+6+\cdots+n}{2}-\frac{4+8+12+\cdots+n}{4}-\cdots-\frac{n}{2^k}=\frac{(1+n)(\frac{n-1}{1}+1)}{2}-\frac{(2+n)(\frac{n-2}{2}+1)}{2\times 2}-\frac{(4+n)(\frac{n-4}{4}+1)}{2\times 4}\cdots-\frac{(n+n)}{2\times 2^k}=\frac{n(n+1)}{2}-\Sigma_{i=1}^k \frac{(2^i+n)n}{2^{2i+1}}.

Let T_n=\Sigma_{i=1}^k \frac{n}{2^{i+1}}=n\Sigma_{i=1}^k \frac{1}{2^{i+1}}=n(\frac{1}{2}-\frac{1}{2^{k+1}})=n(\frac{1}{2}-\frac{1}{2n})=\frac{n}{2}-\frac{1}{2},

U_n=\Sigma_{i=1}^k \frac{n^2}{2^{2i+1}}=n^2\Sigma_{i=1}^k \frac{1}{2^{2i+1}}=n^2\cdot \frac{1}{6}(1-\frac{1}{4^k})=n^2\cdot \frac{1}{6}(1-\frac{1}{n^2})=\frac{n^2}{6}-\frac{1}{6}.

\therefore S_n=\frac{n(n+1)}{2}-T_n-U_n=\frac{n^2}{3}+\frac{2}{3}, when n=2^k, k is a nonnegative integer.

Subsitute n=128 we have S_{128}=5462.

A less rigorous but time-saving approach to the exam can be to write the first 16 terms of a_n and S_n, then you may find out S_{2^k}=S_{2^{k-1}}+4^{k-1} and S_{2^0}=1, that will also give you the answer is 1+4^0+4^1+4^2+\cdots+4^6=5462.

In computer science, there is a cool method to calculate the value of k for each n, which is k = n \& (-n), commonly referred to as "lowbit". This involves many interesting properties of binary numbers, and children interested in this topic can search and learn more about it.