2020 AMC 10 B

Complete problem set with solutions and individual problem pages

Problem 19 Hard

In a certain card game, a player is dealt a hand of 10 cards from a deck of 52 distinct cards. The number of distinct (unordered) hands that can be dealt to the player can be written as 158 \text{AO} 0 \text{~A} 4 \text{AAO}. What is the digit A ?(2020 AMC 10B, Question #19)

  • A.

    2

  • B.

    3

  • C.

    4

  • D.

    6

  • E.

    7

Answer:A

Solution 1:

158 A 00 A 4 A A 0 \equiv 1+5+8+A+0+0+A+4+A+A+0 \equiv 4 A(\bmod 9) We're looking for the amount of ways we can get 10 cards from a deck of 52 , which is represented by \left(\begin{array}{l}52 \\ 10\end{array}\right). \left(\begin{array}{l} 52 \\ 10 \end{array}\right)=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44 \cdot 43}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} We need to get rid of the multiples of 3 , which will subsequently get rid of the multiples of 9 (if we didn't, the zeroes would mess with the equation since you can't divide by 0 ) 9 \cdot 5=45,8 \cdot 6=48, \frac{51}{3}  leaves us with 17. \frac{52 \cdot 51^{17} \cdot 50 \cdot 49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44 \cdot 43}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot \not 5 \cdot 4 \cdot 33 \cdot 2 \cdot 1} Converting these into (\bmod 9) , we have \left(\begin{array}{l}52 \\ 10\end{array}\right) \equiv \frac{(-2) \cdot(-1) \cdot(-4) \cdot 4 \cdot 2 \cdot 1 \cdot(-1) \cdot(-2)}{1 \cdot(-2) \cdot 4 \cdot 2 \cdot 1} \equiv(-1) \cdot(-4) \cdot(-1) \cdot(-2) \equiv 8(\bmod 9 ; 4 A \equiv 8(\bmod 9) \Longrightarrow A=(\mathbf{A}) 2

Solution 2:

\left(\begin{array}{l} 52 \\ 10 \end{array}\right)=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47 \cdot 46 \cdot 45 \cdot 44 \cdot 43}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=26 \cdot 17 \cdot 5 \cdot 7 \cdot 47 \cdot 46 \cdot 11 \cdot 43 Since this number is divisible by 4 but not 8 , the last 2 digits must be divisible by 4 but the last 3 digits cannot be divisible by 8 . This narrows the options down to 2 and 6 . Also, the number cannot be divisible by 3 . Adding up the digits, we get 18+4 A. If A=6, then the expression equals 42 , a multiple of 3 . This would mean that the entire number would be divisible by 3 , which is not what we want. Therefore, the only option is (A)2.